Development of Transfer Hydrogenation Small-Molecule Intracellular Metal Catalysts (SIMCats) and their Application Toward Toxic Aldehyde Remediation
转移氢化小分子胞内金属催化剂(SIMCats)的开发及其在有毒醛修复中的应用
基本信息
- 批准号:10570217
- 负责人:
- 金额:$ 30.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-02 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AlcoholsAldehydesAlkenesAntioxidantsAtherosclerosisBehaviorBiochemicalBiologicalBiological MarkersBiological SciencesBrainCarbamatesCarnosineCatalysisCellsChemicalsChemistryClinical TreatmentComplexConsumptionCopperCouplingCytoprotectionDevelopmentDiseaseDrug Metabolic DetoxicationElectronsEnzymesEventFDA approvedGlutathioneGoalsHealthHumanHydrogenationHydrolysisImaging TechniquesIndividualKineticsLifeMalignant NeoplasmsMammalian CellMeasuresMetalsMethodologyMethodsMonitorNatureNeurodegenerative DisordersOrganismOutcomeOxidation-ReductionOxidative StressPathologicPhloretinProcessPublic HealthReactionReactive Oxygen SpeciesResearchScientistStructure-Activity RelationshipSystemTechniquesTechnologyTestingTherapeuticThermodynamicsTissuesToxic effectTranslatingTranslationsVisualizationWorkZebrafishbiological systemsbiomaterial compatibilitycatalystcell injurychemical stabilitycytotoxicexperimental studyflasksfluorescence imaginghuman diseaseimprovedin vivoinnovationinsightinterestmetal complexneuroblastoma cellnovelnovel strategiesprogramsratiometricreaction rateremediationsingle moleculesmall moleculesuccesssuperresolution microscopysynthetic enzymetoxicant
项目摘要
PROJECT SUMMARY
Although small-molecule intracellular metal catalysts (SIMCats) offer potentially powerful new ways to
manipulate biological systems, several scientific barriers to their development have unfortunately limited their
use in life science research. The long-term goal of this project is to establish a comprehensive SIMCat
discovery program that focuses on their development and translation from the reaction flask to living systems.
The overall objectives of this research are to 1) identify the factors that are important to obtaining fast,
selective, and biocompatible transfer hydrogenation SIMCats; and 2) create new catalytic agents for the
remediation of aldehyde overload. We are interested in SIMCats that catalyze transfer hydrogenation reactions
because they mimic important redox enzymes that are ubiquitous in all life forms. Our central hypothesis is
that these synthetic enzyme mimics could be used to neutralize toxic aldehydes in vivo so that endogenous
antioxidants, such as glutathione, are free to sequester reactive oxygen species that damage cells and tissue.
The rationale for this project is that by selectively converting toxic aldehydes to non-toxic alcohols, transfer
hydrogenation SIMCats could supplement Nature’s defense system against oxidative stress. SIMCats are
expected to be highly efficient detoxification agents due to their ability to catalyze continuous reaction
turnovers, unlike conventional aldehyde scavengers that get consumed upon each reaction. In Specific Aim 1,
a variety of half-sandwich metal complexes will be tested for their activity and the most promising candidates
will be subjected to structure-activity relationship and kinetic/thermodynamic studies to obtain chemical insights
into their catalytic behavior. In Specific Aim 2, the catalytic rates, speciation, and distribution of SIMCats inside
live cells will be determined. This aim will be accomplished by taking advantage of single-molecule super
resolution microscopy and ratiometric fluorescence imaging techniques to visualize SIMCats “in action.” In
Specific Aim 3, the ability of transfer hydrogenation SIMCats to protect neuroblastoma cells and zebrafish
against aldehyde toxicity will be evaluated. The efficacy and aldehyde selectivity of SIMCat detoxification
agents will be compared to that of conventional stoichiometric aldehyde traps. The significance of our
research is the development of synthetic methodologies that are tailored toward the discovery of novel
SIMCats, which considers not only chemical reactivity and substrate selectivity but also biocompatibility. The
innovation of our research is the application of organometallic complexes to protect cells against chemical
toxicants by exploiting their catalytic capabilities. We expect that this work will help streamline the SIMCat
discovery process and lead to new approaches to remedy aldehyde overload, which could have important
therapeutic relevance to the treatment of oxidative stress-related diseases in humans.
项目概要
尽管小分子细胞内金属催化剂(SIMCats)提供了潜在的强大新方法
操纵生物系统,不幸的是,其发展的一些科学障碍限制了它们
该项目的长期目标是建立一个全面的SIMCat。
发现计划,重点关注它们从反应烧瓶到生命系统的开发和转化。
这项研究的总体目标是 1) 确定对于快速获得、
选择性、生物相容性转移氢化SIMCats;以及2) 创造新的催化剂
我们对催化转移氢化反应的 SIMCats 感兴趣。
因为它们模仿了所有生命形式中普遍存在的重要氧化还原酶。
这些合成酶模拟物可用于中和体内有毒醛,从而使内源性醛类
抗氧化剂,例如谷胱甘肽,可以自由地螯合损害细胞和组织的活性氧。
该项目的基本原理是通过选择性地将有毒醛转化为无毒醇,将
氢化 SIMCats 可以补充大自然对抗氧化应激的防御系统。
由于其催化连续反应的能力,有望成为高效的解毒剂
与在特定目标 1 中每次反应都会消耗的传统醛清除剂不同,
将测试各种半夹心金属配合物的活性和最有希望的候选物
将进行结构-活性关系和动力学/热力学研究以获得化学见解
在具体目标 2 中,研究了 SIMCats 内部的催化速率、形态和分布。
活细胞将通过利用单分子超级来实现。
分辨率显微镜和比率荧光成像技术可可视化“运行中”的 SIMCats。
具体目标3、转移氢化SIMCats保护神经母细胞瘤细胞和斑马鱼的能力
将评估 SIMCat 解毒的功效和醛选择性。
我们将把这些试剂与传统的化学计量醛捕获剂进行比较。
研究是针对新发现的合成方法的开发
SIMCats,不仅考虑化学反应性和底物选择性,还考虑生物相容性。
我们研究的创新之处在于应用有机金属配合物来保护细胞免受化学物质的侵害
我们期望这项工作将有助于简化 SIMCat。
发现过程并导致补救醛超载的新方法,这可能具有重要意义
与治疗人类氧化应激相关疾病的治疗相关性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Loi Hung Do其他文献
Loi Hung Do的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Loi Hung Do', 18)}}的其他基金
Development of Transfer Hydrogenation Small-Molecule Intracellular Metal Catalysts (SIMCats) and their Application Toward Toxic Aldehyde Remediation
转移氢化小分子胞内金属催化剂(SIMCats)的开发及其在有毒醛修复中的应用
- 批准号:
10350641 - 财政年份:2020
- 资助金额:
$ 30.6万 - 项目类别:
Using Second Coordination Sphere Interactions of Rhenium(I) Complexes to Promote
利用铼(I)配合物的第二配位层相互作用来促进
- 批准号:
8198732 - 财政年份:2011
- 资助金额:
$ 30.6万 - 项目类别:
Using Second Coordination Sphere Interactions of Rhenium(I) Complexes to Promote
利用铼(I)配合物的第二配位层相互作用来促进
- 批准号:
8311167 - 财政年份:2011
- 资助金额:
$ 30.6万 - 项目类别:
相似国自然基金
NNMT调控METTL14/β-catenin信号轴促进食管鳞癌醛类VOCs产生的机制研究和检测模型的构建
- 批准号:82303567
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乙醛脱氢酶2调控醛类代谢-SIRT1-内质网应激通路抑制视网膜感光细胞凋亡的作用机制研究
- 批准号:82301245
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
亚麻籽酚类化合物油相迁移对籽油C5-C9醛类特征香气生成的影响机制
- 批准号:32360631
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
碱性离子液体插层木薯淀粉基多孔材料构筑及高湿下对醛类VOCs高选择性吸附
- 批准号:22368005
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
绿色构筑金属硅化物用于电化学加氢生物质基醛类化合物
- 批准号:22378434
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Development of Transfer Hydrogenation Small-Molecule Intracellular Metal Catalysts (SIMCats) and their Application Toward Toxic Aldehyde Remediation
转移氢化小分子胞内金属催化剂(SIMCats)的开发及其在有毒醛修复中的应用
- 批准号:
10350641 - 财政年份:2020
- 资助金额:
$ 30.6万 - 项目类别:
Prenylated-Flavin Enzymes as a new Platform for Drug Synthesis and Discovery
异戊二烯化黄素酶作为药物合成和发现的新平台
- 批准号:
9982049 - 财政年份:2019
- 资助金额:
$ 30.6万 - 项目类别:
Development of a Catalytic Protocol for Alkane Dehydrogenation by C–H Activation at Iridium(III)
通过在铱 (III) 上活化 C–H 来开发烷烃脱氢催化方案
- 批准号:
9395276 - 财政年份:2017
- 资助金额:
$ 30.6万 - 项目类别:
Mechanisms of oxacycle- and olefin-installing iron/2-(oxo)glutarate oxygenases
安装氧杂环和烯烃的铁/2-(氧代)戊二酸加氧酶的机制
- 批准号:
9139962 - 财政年份:2015
- 资助金额:
$ 30.6万 - 项目类别:
Mechanisms of oxacycle- and olefin-installing iron/2-(oxo)glutarate oxygenases
安装氧杂环和烯烃的铁/2-(氧代)戊二酸加氧酶的机制
- 批准号:
8965103 - 财政年份:2015
- 资助金额:
$ 30.6万 - 项目类别: