Boundary crossing problems for one-dimensional Markov processes to moving boundaries
一维马尔可夫过程移动边界的边界交叉问题
基本信息
- 批准号:2443857
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project is concerned with boundary crossing problems (BCPs) for various Markov processes. The goal is to find explicit and closed form solutions for random times such as first or last passage time distribution of stochastic processes hitting moving boundaries. Investigating such problems are both of practical and theoretical importance. Such problems arise in many fields of sciences such as mathematical physics, mathematical finance, neurology & etc. In the case of the Brownian motion, this is a classical problem, and explicit solutions can be derived for simple boundaries such as linear, square root or quadratic. The method of images enables us to derive such results for a more complicated set of boundaries and the goal is to extend such methods to other continuous or jump Markov processes (such as Levy processes) and find new family of curves such that explicit results can be obtained. We already published a manuscript titled "Boundary crossing problems and functional transformations for Ornstein-Uhlenbeck processes", were we investigated a two-parameter family of functional transformations and showed its connection to the first passage time (FPT) of Ornstein-Uhlenbeck(OU) type processes to time varying thresholds. Such a hitting time problem is of great interest, as the OU process has been used in many applications to model objects such as interest rates in finance or the evolution of the neuronal membrane voltages in neuroscience. The abstract and the paper itself can be found here (https://doi.org/10.48550/arXiv.2210.01658). Currently, we are interested in BCPs for jump process such as Spectrally negative Levy processes (a Levy process with no positive jumps) or generalized OU processes where instead of having a Brownian motion driving the process, we have a spectrally negative Levy process.
该项目涉及各种马尔可夫过程的边界交叉问题(BCP)。目的是在随机时间找到明确和封闭式的解决方案,例如随机过程的第一个或最后一个通过时间分布,即遇到移动界限。研究此类问题既实用又是理论上的重要性。这些问题在许多科学领域都出现,例如数学物理,数学金融,神经病学和等。在布朗运动的情况下,这是一个经典的问题,并且可以针对线性,平方根或Quadratic等简单边界来得出明确的解决方案。图像方法使我们能够为更复杂的边界集获得此类结果,目标是将这些方法扩展到其他连续或跳跃马尔可夫过程(例如征费过程),并找到新的曲线家族,以便可以获得明确的结果。我们已经发表了一份题为“ Ornstein-uhlenbeck过程的边界交叉问题和功能转换”的手稿,如果我们研究了功能转换的两参数家族,并显示了其与Ornstein-Uhlenbeck(OU)类型的第一个通行时间(FPT)的联系。这样的打击时间问题引起了人们的极大兴趣,因为在许多应用程序中使用了OU过程来建模对象,例如金融中的利率或神经膜膜电压在神经科学中的演变。摘要和论文本身可以在此处找到(https://doi.org/10.48550/arxiv.2210.01658)。目前,我们对BCP感兴趣的跳跃过程感兴趣,例如频谱负征费过程(无积极跳跃的征费过程)或广义的OU过程,在这种过程中,我们没有驱动该过程的Brownian运动,而是具有频谱负征费过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
- DOI:
10.1038/s41598-023-40425-w - 发表时间:
2023-08-16 - 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Comparison of a novel self-expanding transcatheter heart valve with two established devices for treatment of degenerated surgical aortic bioprostheses.
- DOI:
10.1007/s00392-023-02181-9 - 发表时间:
2024-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
- DOI:
10.1038/cddis.2011.59 - 发表时间:
2011-06-23 - 期刊:
- 影响因子:9
- 作者:
- 通讯作者:
Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization.
- DOI:
10.3389/fimmu.2022.902260 - 发表时间:
2022 - 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
- DOI:
10.3390/ijms23105675 - 发表时间:
2022-05-18 - 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
两类交叉扩散生物模型的自由边界问题
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
两类交叉扩散生物模型的自由边界问题
- 批准号:12101121
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于自适应交叉近似的边界点法研究及其在非线性热-弹接触问题中的应用
- 批准号:11602079
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
分形几何与复分析交叉领域的几个问题
- 批准号:11571099
- 批准年份:2015
- 资助金额:55.0 万元
- 项目类别:面上项目
电磁场逆问题分析、计算的交互式矢量正交边界交叉算法研究
- 批准号:51407172
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A study of combinatorial problems caused by the crossing of chords
和弦交叉引起的组合问题研究
- 批准号:
19K03607 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Big data and small molecules for Alzheimer's disease
阿尔茨海默病的大数据和小分子
- 批准号:
10168854 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Connection problems of hypergeometric functions from the view point of higher dimensional Erdelyi cycles and their intersection numbers
高维Erdelyi循环及其交数角度的超几何函数连接问题
- 批准号:
19K03517 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Seismology- and Geodesy-Based Inverse Problems Crossing Scales, with Scattering, Anisotropy and Nonlinear Elasticity
基于地震学和大地测量学的跨尺度反问题,具有散射、各向异性和非线性弹性
- 批准号:
1815143 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Development of a safe crossing assistance system that solves the problems blind and visually impaired people face in the early stages of roadcrossing
开发安全过马路辅助系统,解决盲人和视障人士过马路初期面临的问题
- 批准号:
18K12159 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)