Intelligent composites forming - simulations for faster, higher quality manufacture

智能复合材料成型 - 通过模拟实现更快、更高质量的制造

基本信息

  • 批准号:
    2443421
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

This project aims to explore an intelligent way to optimize and accelerate our computer assistant modelling tool which simulates the textile forming process. A machine learning (ML) based surrogate model is being developed, which aims to provide live prediction to fabric forming industry. This surrogate model is trained by a set of data generated by finite element (FE) simulation tool. Considering the high calculation cost when obtaining an accurate FE simulation data point, the method of sampling and supplementary point selecting should be well designed, in order to make the training cost as low as possible meanwhile control the predicting deviations.First of all, in the aspect of FE simulation, a way to the destination of reducing defect level in dry textile forming process is explored. A shell-membrane hybrid FE modelling tool is adopted to simulate the behaviour of textile during forming on an industry-inspired tool. A series of springs or other controlling method will be adopted to adjust the forming controls in the FE model, in order to simulate the different wrinkling and bridging level under different forming parameters. In current research, the positions and stiffnesses, together with the pressure applied on the top, are regarded as input parameters and can be modified to control the deformation of textile during forming. By providing a set of combinations of input parameters, hundreds of simulations will be conducted to obtain a data set, which will be used as the training set for surrogate model.The long-term research will explore the feasibility of the framework of using ML-based time-efficient surrogate model to assist forming process optimization. In the current work, the Gaussian Process Regression (GPR) method is used to develop the surrogate model, for its applicability on small data set problem. On the other hand, GPR method naturally features uncertainty quantification ability, which can be used to predict and quantify the potential variances in the forming process. This method will be tested and developed as a tool for our industry partners, which is expected to greatly reduce forming defects as well as shorten the parameter test period. With the maturation of this surrogate model, the model together with the entire method can be compiled into software and integrated in forming process equipment in the future. With the use of sensors, real-time parameters such as the local temperature, tensile force, and shear angle of fabrics and moulds can be detected and collected during the process. By importing these real-time data into the surrogate model, the software can calculate the point with the highest probability of producing the optimal result, so that the forming rig can fine-tune the control parameters to optimize the quality of the forming.This technology can not only be applied in the forming process. In the various steps of composites part production, such as compaction, curing or AFP layup, this technology can be used for real-time optimization of processing quality. It can be said that this technology is an important way for the intelligent upgrading of the manufacturing industry.The project will explore the possibility of applying artificial intelligence and machine learning methods to optimization of composites fabric forming process, and furthermore, other complex manufacturing process. In the context of the rapid development of machine learning theories and computing capabilities, the use of artificial intelligence for process optimization will be a major trend in the development of the manufacturing industry in the future. This will help the country's manufacturing level to continue to maintain its leading position in the world and bring a lot of benefits.
该项目旨在探索一种智能方法来优化和加速我们模拟纺织品成型过程的计算机辅助建模工具。正在开发基于机器学习 (ML) 的代理模型,旨在为织物成型行业提供实时预测。该代理模型由有限元 (FE) 仿真工具生成的一组数据进行训练。考虑到获得准确的有限元模拟数据点时计算成本较高,应精心设计采样和补充点选择的方法,使训练成本尽可能低,同时控制预测偏差。在有限元模拟方面,探索了一种降低干纺织品成型过程中缺陷水平的方法。采用壳膜混合有限元建模工具来模拟纺织品在工业启发工具上成型过程中的行为。将采用一系列弹簧或其他控制方法来调整有限元模型中的成形控制,以模拟不同成形参数下的不同起皱和桥接程度。在当前的研究中,位置和刚度以及施加在顶部的压力被视为输入参数,并且可以进行修改以控制织物在成型过程中的变形。通过提供一组输入参数的组合,进行数百次模拟,得到一个数据集,该数据集将用作代理模型的训练集。长期研究将探索使用ML-框架的可行性。基于时间高效的替代模型来协助成形过程优化。在当前的工作中,使用高斯过程回归(GPR)方法来开发代理模型,因为它适用于小数据集问题。另一方面,探地雷达方法天生具有不确定性量化能力,可以用来预测和量化成形过程中潜在的方差。该方法将作为我们行业合作伙伴的工具进行测试和开发,预计将大大减少成形缺陷并缩短参数测试周期。随着该替代模型的成熟,未来该模型连同整个方法可以编译成软件并集成到成形工艺设备中。通过传感器的使用,可以在过程中检测和收集织物和模具的局部温度、拉力、剪切角等实时参数。通过将这些实时数据导入代理模型,软件可以计算出产生最佳结果的概率最高的点,以便成型机可以微调控制参数以优化成型质量。该技术不仅可以应用在成型过程中。在复合材料零件生产的各个步骤中,例如压实、固化或AFP铺层,该技术可用于实时优化加工质量。可以说,该技术是制造业智能化升级的重要途径。该项目将探索应用人工智能和机器学习方法优化复合材料织物成型过程以及其他复杂制造过程的可能性。在机器学习理论和计算能力快速发展的背景下,利用人工智能进行流程优化将是未来制造业发展的一大趋势。这将有助于国家的制造水平继续保持在世界的领先地位,并带来很多好处。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Products Review
  • DOI:
    10.1177/216507996201000701
  • 发表时间:
    1962-07
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
  • 通讯作者:
Farmers' adoption of digital technology and agricultural entrepreneurial willingness: Evidence from China
  • DOI:
    10.1016/j.techsoc.2023.102253
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
  • 通讯作者:
Digitization
References
Putrescine Dihydrochloride
  • DOI:
    10.15227/orgsyn.036.0069
  • 发表时间:
    1956-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

固化成型缺陷对CFRP复合材料承载性能影响机理与高性能固化工艺优化
  • 批准号:
    12302189
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
复合材料纤维预制体成型多缺陷的形成机理及协同调控方法
  • 批准号:
    12302191
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
复合材料水驱动浮芯辅助注射成型微观形态演变与性能研究
  • 批准号:
    52303038
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
成型氮掺杂多孔碳包覆过渡金属复合材料活化PMS的机制调控及其对废水中抗生素去除研究
  • 批准号:
    52370036
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
选区激光熔化成型铝基复合材料的成分设计与微观结构演变机制
  • 批准号:
    52371137
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Forming of Composites
复合材料的成型
  • 批准号:
    RGPIN-2018-05086
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Forming Ahead with Deep Learning for Composites Manufacturing
通过深度学习在复合材料制造领域取得领先
  • 批准号:
    2765736
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
An integrated multi-scale approach to modeling and optimization of forming-induced wrinkles in woven fabric composites
机织物复合材料中成型引起的皱纹的建模和优化的集成多尺度方法
  • 批准号:
    RGPIN-2018-04575
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
An integrated multi-scale approach to modeling and optimization of forming-induced wrinkles in woven fabric composites
机织物复合材料中成型引起的皱纹的建模和优化的集成多尺度方法
  • 批准号:
    RGPIN-2018-04575
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Forming of Composites
复合材料的成型
  • 批准号:
    RGPIN-2018-05086
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了