Representations of symmetric groups, wreath products of symmetric groups and related diagram algebras

对称群的表示、对称群的花圈积及相关图代数

基本信息

  • 批准号:
    2289820
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

The representation theory of symmetric groups has been studied for over a century but many fundamental questions remain open. One such problem is to understand the plethysm of two simple modules of symmetric groups, a construction relating representations of symmetric groups and representations of wreath products of two symmetric groups. The resulting plethysm coefficients are "perhaps the most challenging, deep and mysterious objects in algebraic combinatorics" (Pak, Panova 2017). Diagram algebras are a more recent subject with such algebras arising in different parts of mathematics and physics, brought together by Graham and Lehrer's definition of cellular algebras in 1995. But certain diagram algebras provide an important tool with which to attack questions about symmetric groups and their wreath products. In this project the student will use representation-theoretic and combinatorial methods to investigate these diagram algebras and derive consequences for understanding plethysm.
对称群的表示论已经被研究了一个多世纪,但许多基本问题仍然悬而未决。其中一个这样的问题是理解对称群的两个简单模块的体积,一种与对称群的表示和两个对称群的花环乘积的表示相关的构造。由此产生的体积系数“也许是代数组合学中最具挑战性、最深刻和最神秘的对象”(Pak,Panova 2017)。图代数是一门较新的学科,此类代数出现在数学和物理学的不同部分,由 Graham 和 Lehrer 在 1995 年对细胞代数的定义汇集在一起​​。但是某些图代数提供了一个重要的工具,可以用来解决有关对称群及其对称群的问题。花环产品。在这个项目中,学生将使用表示论和组合方法来研究这些图代数并得出理解体积的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

リンの回収方法および回収装置
磷的回收方法及回收装置
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
ホームページ等
主页等
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
20世紀前半のフィリピン降水量データセット作成(DIAS地球観測データ統合解析プロダクトに掲載)
菲律宾20世纪上半叶降水数据集创建(发表于DIAS对地观测数据综合分析产品)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
浅沼順
浅沼纯
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
陽極酸化アルミナの製造方法、陽極酸化アルミナ、および高密度構造体
制造阳极氧化铝的方法、阳极氧化铝和致密结构
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of a new solid tritium breeder blanket
新型固体氚增殖毯的研制
  • 批准号:
    2908923
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
  • 批准号:
    2903298
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Landscapes of Music: The more-than-human lives and politics of musical instruments
音乐景观:超越人类的生活和乐器的政治
  • 批准号:
    2889655
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

模对称性及其在味物理中的应用
  • 批准号:
    12375104
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
对质量形变SU(N)超对称Yang-Mills理论在R³×S¹流形上禁闭性质的非微扰研究
  • 批准号:
    12305079
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
钯催化缺电子氮杂芳烃的不对称去芳构化环化-重排串联反应
  • 批准号:
    22371255
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
石墨烯/低对称材料异质结各向异性界面热输运的机理及调控研究
  • 批准号:
    62304198
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
生长素-TMK信号途径通过GSK3调控细胞不对称分裂的分子机制
  • 批准号:
    32300271
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Study of special blocks of spin symmetric groups for irreducible representations and derived equivalences
研究不可约表示和导出等价的自旋对称群的特殊块
  • 批准号:
    20K03506
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exponents for representations of the symmetric groups and modular forms
对称群和模形式表示的指数
  • 批准号:
    527759-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Exponents for representations of the symmetric groups and modular forms
对称群和模形式表示的指数
  • 批准号:
    527759-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Irreducible tensor products of representations of symmetric and related groups
对称群和相关群表示的不可约张量积
  • 批准号:
    392927392
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
From spin representations of the symmetric groups to Hirota equations
从对称群的自旋表示到 Hirota 方程
  • 批准号:
    17K05180
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了