Large deviation analysis of interacting systems of Brownian motions and random interlacements at positive temperature
正温度下布朗运动和随机交错相互作用系统的大偏差分析
基本信息
- 批准号:2273598
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overall theme is interacting particle systems and their critical phenomena. The novelty is to combine large deviation analysis for interacting Brownian motions with the recently developed theory of random interlacements. A second novelty is the specific scaling towards the scattering length, which describes interactions of Brownian motions and random interlacements. The aim to prove that condensation onto infinitely long cycles, which are given as random interlacements, is a signal of the so-called BoseEinstein condensation for interacting Bosons. This result will for the first time establish probabilistic condensation and its applications to mathematical physics. The main novelty is to prove that 'infinitely long' cycles appear as some random interlacements process. The aim is to find such a random process. It is primarily a probabilistic project using large deviation techniques, stochastic analysis, multi-scale analysis and interacting particle systems.Background. In this project, one of the most fascinating and challenging models is analysed, namely, interacting Bosons at positive temperature. Since the experiments on cold atoms in the late 1990s and two Nobel Prizes, mathematical research has started aiming to prove the so-called Bose-Einstein condensation critical phenomena like for example the superfluidity of liquid Helium at low temperatures. The project is using probabilistic methods for the quantum interacting systems - the so-called Feynman-Kac formula allows to transfer the quantum problem to a classical problem in probability theory.Main techniques to be used are variants of large deviation analysis, stochastic analysis and concentration inequalities. In particular, the project studies marked Poisson point processes with interaction, and the project involves the following steps:(1) Examination of the large N limit (number of Brownian motions) coupled with the large time limit for interacting Brownian motions in trap potential in the Gross-Pitaevskii scaling limit. The first step is to develop and employ a probabilistic version of the so-called scattering length to obtain a compelling description of the role of scaling of interaction terms.(2) The second step is to study the marked point process with cycle length distributions and interlacements distributions (both systems with no interaction terms). And relate the Bose-Einstein condensation phenomenon to the onset of positive probability weight on the so-called random interlacements, a random process of double-infinite (time horizon) paths (paths coming from infinity and disappearing to infinity).Random interlacements are a novel class of process and have recently attained a lot of research activity. We aim to showcase a useful application of this novel notion for the analysis of Bose-Einstein condensation-like phenomena.(3) Once step (2) proves the condensation, the major part will be to allow for interactions among finite cycles with or without the random interlacement processes. As a previous step, the project will show that the positive scattering length of step (1) can trigger condensation phenomena. Once the project finishes this analysis, the project studies the systems without the scaling of the interaction terms. The step is the most challenging of the whole project as it aims to demonstrate connections between spatial correlations and condensation onto interlacements. This result will establish a breakthrough in the field and is quite likely to have a lasting impact in the direction of many-particle systems and their condensation phenomena.(4) Once step 3 shows the novel condensation phenomena, the project will study the role of Gibbs measures for the coupled systems of Brownian motions and random interlacements.
总体主题是相互作用的粒子系统及其关键现象。新颖性是将大型偏差分析与最近开发的随机讲述理论相结合。第二个新颖性是朝向散射长度的特定缩放,它描述了布朗运动和随机讲述的相互作用。目的是证明将其缩合到无限长的循环上(作为随机的插座)是所谓的Boseeinstein凝结的信号,用于相互作用的玻色子。该结果将首次建立概率凝结及其在数学物理学上的应用。主要的新颖性是证明“无限长”的周期似乎是一些随机的中间过程。目的是找到这样的随机过程。它主要是使用大偏差技术,随机分析,多尺度分析和相互作用的粒子系统的概率项目。在这个项目中,分析了最引人入胜且最具挑战性的模型之一,即在正温度下相互作用的玻色子。自从1990年代后期进行冷原子的实验和两次诺贝尔奖以来,数学研究已经开始旨在证明所谓的玻色 - 因斯坦凝结关键现象,例如例如低温下液体氦气的超流体。该项目正在为量子相互作用系统使用概率方法 - 所谓的Feynman-KAC公式允许将量子问题转移到概率理论中的经典问题中。要使用的介质技术是大偏差分析,随机分析和浓度的变体不平等。特别是,该项目研究标志着泊松点过程与相互作用,并且该项目涉及以下步骤:(1)检查较大的N极限(Brownian Motions的数量),以及较大的时间限制,以使Brownian Motions在陷阱中相互作用的陷阱潜力相互作用。毛taevskii缩放限制。第一步是开发和采用所谓散射长度的概率版本,以获取相互作用术语缩放范围的作用的引人注目的描述。(2)第二步是研究具有周期长度分布和周期长度分布的标记点过程讲述分布(两个没有交互项的系统)。并将Bose-Einstein凝结现象与所谓的随机中间的阳性概率重量的发作联系起来,这是一个随机的双infinite(时间范围)路径(来自无穷大的路径,消失到无穷大)。新的过程类别,最近获得了大量的研究活动。我们的目的是展示这一新颖概念在分析类似于bose-内的凝结现象的有用应用。(3)一旦一步(2)证明了凝结,主要部分是允许在有或没有有限周期之间进行相互作用随机讲述过程。作为上一步,该项目将表明步骤(1)的正散射长度可以触发冷凝现象。一旦项目完成了此分析,该项目就会研究系统,而无需扩展交互项。该步骤是整个项目中最具挑战性的一步,因为它旨在证明空间相关性和凝结与中间隔离之间的联系。该结果将在该领域建立突破,并且很可能会在许多粒子系统及其凝结现象的方向上产生持久的影响。(4)一旦步骤3显示了新型的凝结现象,该项目将研究Gibbs测量了布朗尼运动和随机讲述的耦合系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Products Review
- DOI:
10.1177/216507996201000701 - 发表时间:
1962-07 - 期刊:
- 影响因子:2.6
- 作者:
- 通讯作者:
Farmers' adoption of digital technology and agricultural entrepreneurial willingness: Evidence from China
- DOI:
10.1016/j.techsoc.2023.102253 - 发表时间:
2023-04 - 期刊:
- 影响因子:9.2
- 作者:
- 通讯作者:
Digitization
- DOI:
10.1017/9781316987506.024 - 发表时间:
2019-07 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
References
- DOI:
10.1002/9781119681069.refs - 发表时间:
2019-12 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Putrescine Dihydrochloride
- DOI:
10.15227/orgsyn.036.0069 - 发表时间:
1956-01-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于非线性偏差传播的碎片云演化与级联碰撞效应分析
- 批准号:12372052
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于状态空间压缩的多工位柔顺装配偏差分析研究
- 批准号:52375487
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
公众认知偏差视角下企业ESG信息多主体披露与企业财务绩效分析
- 批准号:72273041
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
人机协同中的偏差与商业决策分析:从输入、输出到应用的全过程研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
江淮梅雨锋暴雨对流尺度模拟偏差特征分析及可预报性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Analysis on stationary non-equilibrium states via large deviation principle for hydrodynamic limit
基于流体动力极限大偏差原理的稳态非平衡态分析
- 批准号:
16H07041 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Large deviation principle and its universality in dynamical systems
大偏差原理及其在动力系统中的普遍性
- 批准号:
16K05179 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unified approach for studying large queues and its application to complex network models
研究大队列的统一方法及其在复杂网络模型中的应用
- 批准号:
16H02786 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Large Deviation Statistical Analysis on Plasma Turbulence based on Conditional Averaging
基于条件平均的等离子体湍流大偏差统计分析
- 批准号:
26420852 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characteristics of weak chaos in view of large deviation analysis and infinite ergodicity
大偏差分析和无限遍历性下的弱混沌特征
- 批准号:
25400411 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)