COMPUTER AIDED DIAGNOSIS IN CT OF THE THORAX
胸部CT计算机辅助诊断
基本信息
- 批准号:6647008
- 负责人:
- 金额:$ 23.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-09-07 至 2005-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broad, long term objective of the proposed research is to
develop a fully automated, computerized system that will assist radiologists in
the detection and quantitative assessment of pulmonary nodules in helical
computed tomography (CT) images of the thorax. This system will potentially
improve the prognosis of patients with lung cancer by contributing to earlier
diagnosis. It is widely recognized that helical CT is the most sensitive
imaging modality for the valuation of lung nodules. The large amount of image
data acquired during a CT scan, however, makes nodule detection by human
observers a difficult task. Moreover, distinguishing between nodules and normal
anatomy such as pulmonary vessels typically requires visual comparison among
multiple CT sections, each of which contains information that must be evaluated
by a radiologist and assimilated into the larger context of the volumetric data
acquired during the scan. This evaluation requires the radiologist to mentally
construct a three-dimensional representation of patient anatomy based on over
50 section images acquired during a CT examination. This task, while cumbersome
for radiologists, may be efficiently handled by a computerized method. The
proposed research project will investigate the two-dimensional and
three-dimensional structure of lung nodules in helical CT images to fully
exploit the volumetric image data acquired during a CT examination. Gray-level
threshold-based techniques will be used to extract three-dimensional structures
from CT image data. Quantitative geometric and gray-level information computed
for nodule candidates will be used as input to automated classifiers to
distinguish between structures that correspond to nodules and structures that
correspond to normal anatomy. This quantitative information will also allow for
an evaluation of detection performance based on radiologic appearance of
nodules.
The specific aims of the proposed research are: (1) to collect databases of
normal and abnormal helical thoracic CT scans, (2) to develop an automated
method to detect and quantitatively assess pulmonary nodules in these CT scans,
(3) to investigate differences in the appearance of nodules imaged in low-dose
helical thoracic CT scans obtained from a lung cancer screening program as
opposed to standard helical CT and the effect of these differences on the
detection scheme, and (4) to evaluate the performance of the computerized
detection scheme and its effect on the performance of radiologists in the task
of identifying pulmonary nodules.
拟议的研究的广泛,长期目标是
开发一个完全自动化的计算机系统,可以帮助放射科医生
螺旋结节中肺结核的检测和定量评估
胸腔的计算机断层扫描(CT)图像。这个系统可能会
改善肺癌患者的预后
诊断。人们广泛认识到螺旋CT是最敏感的
肺结节评估的成像方式。大量图像
然而,在CT扫描期间获得的数据使人可以检测到人类的结节检测
观察者是一项艰巨的任务。此外,区分结节和正常
诸如肺血管之类的解剖结构通常需要在
多个CT部分,每个部分包含必须评估的信息
通过放射科医生并吸收了体积数据的更大背景
在扫描过程中获得。该评估要求放射科医生在心理上
基于过度构建患者解剖结构的三维表示
在CT检查期间获得的50个部分图像。这项任务,虽然很麻烦
对于放射科医生,可以通过计算机方法有效地处理。这
拟议的研究项目将调查二维和
螺旋CT图像中肺结节的三维结构
利用在CT检查期间获得的体积图像数据。灰色水平
基于阈值的技术将用于提取三维结构
来自CT图像数据。计算的定量几何和灰度信息
对于结节候选者,将用作自动分类器的输入
区分与结节和结构相对应的结构
对应于正常解剖结构。这些定量信息也将允许
基于放射线外观的检测性能评估
结节。
拟议研究的具体目的是:(1)收集数据库
正常和异常的螺旋胸CT扫描,(2)发展自动化
在这些CT扫描中检测和定量评估肺结核的方法,
(3)研究低剂量成像的结节外观差异
从肺癌筛查计划获得的螺旋胸CT扫描作为
反对标准的螺旋CT以及这些差异对
检测方案和(4)评估计算机化的性能
检测方案及其对放射科医生在任务中的绩效的影响
识别肺结核。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel G. Armato其他文献
The use of radiomics on computed tomography scans for differentiation of somatic BAP1 mutation status for patients with pleural mesothelioma
使用放射组学在计算机断层扫描上区分胸膜间皮瘤患者的体细胞 BAP1 突变状态
- DOI:
10.1117/12.3000085 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mena Shenouda;Abbas Shaikh;Ilana Deutsch;Owen Mitchell;Hedy L. Kindler;Samuel G. Armato - 通讯作者:
Samuel G. Armato
Assessing radiomic feature robustness using agreement over image perturbation
使用图像扰动一致性评估放射组学特征的鲁棒性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Abbas Shaikh;Ilana Deutsch;Mena Shenouda;Owen Mitchell;Hedy L. Kindler;Samuel G. Armato - 通讯作者:
Samuel G. Armato
Samuel G. Armato的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel G. Armato', 18)}}的其他基金
Acuo PACS system on Blade server infrastructure
刀片服务器基础设施上的 Acuo PACS 系统
- 批准号:
8053593 - 财政年份:2011
- 资助金额:
$ 23.34万 - 项目类别:
Computerized Analysis of Mesothelioma on CT Scans
CT 扫描间皮瘤的计算机分析
- 批准号:
7501649 - 财政年份:2006
- 资助金额:
$ 23.34万 - 项目类别:
Computerized Analysis of Mesothelioma on CT Scans
CT 扫描间皮瘤的计算机分析
- 批准号:
7620457 - 财政年份:2006
- 资助金额:
$ 23.34万 - 项目类别:
Computerized Analysis of Mesothelioma on CT Scans
CT 扫描间皮瘤的计算机分析
- 批准号:
7429762 - 财政年份:2006
- 资助金额:
$ 23.34万 - 项目类别:
Computerized Analysis of Mesothelioma on CT Scans
CT 扫描间皮瘤的计算机分析
- 批准号:
7287098 - 财政年份:2006
- 资助金额:
$ 23.34万 - 项目类别:
Computerized Analysis of Mesothelioma on CT Scans
CT 扫描间皮瘤的计算机分析
- 批准号:
7237904 - 财政年份:2006
- 资助金额:
$ 23.34万 - 项目类别:
Computerized Analysis of Mesothelioma on CT Scans
CT 扫描间皮瘤的计算机分析
- 批准号:
7478308 - 财政年份:2006
- 资助金额:
$ 23.34万 - 项目类别:
Computerized Analysis of Mesothelioma on CT Scans
CT 扫描间皮瘤的计算机分析
- 批准号:
7033362 - 财政年份:2006
- 资助金额:
$ 23.34万 - 项目类别: