A Neuro-Symbolic Explainable Machine Learning Model Using Knowledge Graphs

使用知识图的神经符号可解释机器学习模型

基本信息

  • 批准号:
    2112481
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

MotivationDespite the popularity and recent advances in Artificial Intelligence (AI) systems boosted by machine learning (ML) methods, most of the existing models fall short on their ability to explain their reasoning process, i.e., in providing human-like justifications for the reasoning behind a certain AI task. This functionality of "being interpretable" is a fundamental requirement for the adoption and uptake of AI systems in real-world scenarios, as users need to trust and understand the approximations and inferences done by the system. The application of AI in contexts with high social and economic impact (as in health care and legal settings) will require the evolution of black-box AI models in the direction of systems which can justify, explain and dialogue with their end-users about the underlying reasoning process, providing transparent human-interpretable outputs.ApproachThis project aims at developing a neuro-symbolic explainable Machine Learning model using Knowledge graphs. The goal is to support the construction of complex AI systems for addressing tasks such as Question Answering and Text Entailment, which can output meaningful human-like explanations in addition to the expected output. Research QuestionsThe project targets the following research questions:1. Can knowledge graphs (definitional, fact-based, discourse-level) be used in conjunction to differential(neuro) inductive logic programming (the neuro-symbolic approach) to support explainable machine learning?2. Which set of quantitative measures can be used to evaluate explainable machine learning systems? Novel Engineering ContentThe project will articulate for the first-time the connection between knowledge graphs, which represents large-scale background knowledge and differential inductive logic programming.EPSRC Research AreasNatural Language Processing, Machine Learning
动机尽管机器学习(ML)方法推动了人工智能(AI)系统的普及和最新进展,但大多数现有模型都缺乏解释其推理过程的能力,即为背后的推理提供类似人类的理由某个人工智能任务。这种“可解释”的功能是在现实场景中采用和采用人工智能系统的基本要求,因为用户需要信任和理解系统所做的近似和推理。人工智能在具有较高社会和经济影响的环境中(如医疗保健和法律环境)的应用将需要黑盒人工智能模型朝着能够证明、解释并与最终用户对话的系统方向发展。底层推理过程,提供透明的人类可解释的输出。方法该项目旨在使用知识图开发一种神经符号可解释的机器学习模型。目标是支持构建复杂的人工智能系统来解决诸如问答和文本蕴涵等任务,除了预期的输出之外,还可以输出有意义的类人解释。研究问题本项目针对以下研究问题: 1.知识图(定义的、基于事实的、话语层面的)能否与微分(神经)归纳逻辑编程(神经符号方法)结合使用来支持可解释的机器学习?2。哪组定量测量可用于评估可解释的机器学习系统?新颖的工程内容该项目将首次阐明代表大规模背景知识的知识图与微分归纳逻辑编程之间的联系。 EPSRC 研究领域自然语言处理、机器学习

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Products Review
  • DOI:
    10.1177/216507996201000701
  • 发表时间:
    1962-07
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
  • 通讯作者:
Farmers' adoption of digital technology and agricultural entrepreneurial willingness: Evidence from China
  • DOI:
    10.1016/j.techsoc.2023.102253
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
  • 通讯作者:
Digitization
References
Putrescine Dihydrochloride
  • DOI:
    10.15227/orgsyn.036.0069
  • 发表时间:
    1956-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

从象征性到实质性:企业多重地位视角下的制造企业数字创新行为研究
  • 批准号:
    72272133
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Symbolic Learning with Neural Language Models
职业:使用神经语言模型进行符号学习
  • 批准号:
    2338833
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference: NSF Workshop on Hardware-Software Co-design for Neuro-Symbolic Computation
会议:NSF 神经符号计算软硬件协同设计研讨会
  • 批准号:
    2338640
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Symbolic representation of objects via visual symbols in the primates brain
灵长类动物大脑中通过视觉符号对物体进行符号表示
  • 批准号:
    23K12942
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Reconstruction and Application of Learning Methods for Symbolic Regression Models
符号回归模型学习方法的重构及应用
  • 批准号:
    23H03466
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了