Geometry of hyperbolic groups and of their actions on Banach spaces
双曲群的几何及其在巴纳赫空间上的作用
基本信息
- 批准号:2099922
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Summary of the projectThis project will focus on the possible connection between the intrinsic geometry of a hyperbolic group in the sense of Gromov (in particular the geometry of its boundary, its conformal dimension, and so forth) and the geometry of the actions of the same hyperbolic group on Banach spaces of a certain type and cotype (in particular its actions on L^p spaces). One specific setting in which these questions will be looked into is that of random groups, both in the triangular and in the density model.Context of the research including potential impactThese types of questions have aroused a lot of interest recently, especially since they connect in more than one way to random graphs and expanders, a topic that is mainstream nowadays both in combinatorics and in theoretical computer science.Aims and objectivesThe aim of this project will be to clarify, through theorems and relevant examples, the conjectured connection between the conformal dimension of the boundaries of hyperbolic groups and the geometry of the Banach spaces on which such groups can act. It will also aim to clarify what strong properties of expansion random graphs can have, and to deduce corresponding statements about random groups.Novelty of the research methodologyThe methodology involved mixes discretisations of analytical concepts and methods and the use of probability to deduce the existence of graphs and groups with special properties.Alignment to EPSRC's strategies and research areasThis project falls within the EPSRC `Geometry and Topology' research area, and is also at the borderline with the `Mathematical Analysis' research area.
Project This项目的摘要将重点介绍Gromov的双曲线群体的内在几何形状之间的可能联系(尤其是其边界的几何形状,其保形维度等)与同一双曲线群体在某种类型和Cotype(尤其是对L^p space的动作)上相同双曲线群体的作用的几何形状。这些问题将要研究的一个具体环境是随机组,无论是在三角形还是密度模型中。定理和相关示例,双曲基团边界边界的共形维与此类组可以作用的Banach空间的几何形状之间的猜想联系。它还将旨在阐明扩展随机图的强大特性可以具有什么,并推断出有关随机组的相应陈述。研究方法的novelty涉及方法论,涉及分析概念和方法的离散性以及使用概率的使用来推导图形和组的存在与特性的特性和特殊属性。并且也处于“数学分析”研究领域的边界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Metal nanoparticles entrapped in metal matrices.
- DOI:
10.1039/d1na00315a - 发表时间:
2021-07-27 - 期刊:
- 影响因子:4.7
- 作者:
- 通讯作者:
Stunting as a Risk Factor of Soil-Transmitted Helminthiasis in Children: A Literature Review.
- DOI:
10.1155/2022/8929025 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Aspirin use is associated with decreased inpatient mortality in patients with COVID-19: A meta-analysis.
- DOI:
10.1016/j.ahjo.2022.100191 - 发表时间:
2022-08 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ged?chtnis und Wissenserwerb [Memory and knowledge acquisition]
- DOI:
10.1007/978-3-662-55754-9_2 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A Holistic Evaluation of CO2 Equivalent Greenhouse Gas Emissions from Compost Reactors with Aeration and Calcium Superphosphate Addition
曝气和添加过磷酸钙的堆肥反应器二氧化碳当量温室气体排放的整体评估
- DOI:
10.3969/j.issn.1674-764x.2010.02.010 - 发表时间:
2010-06 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于修正Battelle双曲线模型的埋地输气管道止裂控制研究
- 批准号:12172270
- 批准年份:2021
- 资助金额:61.00 万元
- 项目类别:面上项目
基于修正Battelle双曲线模型的埋地输气管道止裂控制研究
- 批准号:
- 批准年份:2021
- 资助金额:61 万元
- 项目类别:面上项目
全工序法加工超减比双曲线齿轮的双面同步成形机理及其设计方法研究
- 批准号:51805555
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
磁光材料的近场辐射传热增强及调控研究
- 批准号:51806070
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
双曲线型三体问题下小行星附近集群编队飞行的轨道演化与控制
- 批准号:11772024
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Ergodic theory for conformal dynamics with applications to fractal geometry
共形动力学的遍历理论及其在分形几何中的应用
- 批准号:
21K03269 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discrete Groups in Complex Hyperbolic Geometry
复杂双曲几何中的离散群
- 批准号:
1708463 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Degeneration and collapsing of Kleinian groups; geometry and analysis of the compactification of their defamation spaces
克莱因群的退化和崩溃;
- 批准号:
16H03933 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Hyperbolic geometry and mapping class groups
双曲几何和映射类组
- 批准号:
1509171 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
coarse geometry of negatively curved spaces beyond relatively hyperbolic groups
相对双曲群之外的负弯曲空间的粗略几何
- 批准号:
15K17528 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)