How local particle filters can be used to solve filtering and smoothing problems in Hidden Markov Models

如何使用局部粒子滤波器解决隐马尔可夫模型中的滤波和平滑问题

基本信息

  • 批准号:
    1961576
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Abstract(no more than 4,000 characters inc spaces) Hidden Markov Models (HMM) can be applied widely in real life, from traffic models to different biological and neural models. This fitting with reality has increased the demand of precise and efficient algorithms to solve the filtering and the smoothing problems. The literature offers different methods to work out the filtering and the smoothing distribution of the underlying model, though when the dimension increases two problems are revealed. Firstly, as outspread in the paper by Rebeschini, Van Handel et al. (Can local particle filters beat the curse of dimensionality?, 2015), the particle filter (a well-know algorithm that estimates the filtering distribution) is affected by the curse of dimensionality. Secondly, even if the quantities of interest can be calculated in a close form the growth in the dimension could make the computational cost unfeasible. As explained in detail by Rebeschini, Van Handel et al. (2015), it is possible to prevent this problem by developing local particle filters with a dimension-free error, which has also the advantage of being computationally cheaper.The starting point of the research is the HMM where the hidden Markov chain is an n-dimensional sequence of 0's and 1's. Given that the state space is the product space of {0, 1} (n-times) , it can be easily recognized that the dimension is 2 to the power of n, meaning that the curse of dimensionality can be an issue. Since the state space is finite, the filtering and the smoothing distributions are available after forward and a backward step. However these operations involve handling matrices with 2 to the n rows and 2 to the n columns that are too expensive from a computational point of view. A possible work around to this is to introduce an error to increase the speed of the algorithm. This approximation can be found by assuming the existence of a local structure inside the model and considering a particular factorization of the observation distribution. The first thing is assuming that the Markov process X, for a fixed time, admits a local structure, meaning that each component is somehow caused by only a set of neighbors. The second assumption is that the process Y for a fixed time is drawn from a distribution G that admits a nondegenerative representation, meaning that exists a positive observation density g which factorizes. The last assumption is the factorization of the initial measure. These assumptions allow to redefine the forward step as working only on matrices with reduced dimension and with a low approximation error. Having ensured that the corresponding implementation works properly, the next aim will be to modify the EM algorithm to also include the cases in which all the parameters of the model (initial distribution, transition kernel, etc.) are unknown. This specific case has an application to traffic models. Indeed, in the temporal evolution of a network of roads each edge can be modeled by a component with a value that can be either congested or not congested. Of course this state of a road is not achievable, therefore only the number of cars for each road is observed. In this specific case the local structure is a reasonable assumption, because the traffic in a road is influenced only by the closest ones. The next step would be to apply the algorithm to this freeway traffic model, using data from the real world.As natural continuation of the research, it will be interesting to study generalization of this algorithm. So trying to apply the approximation not only to the "ideal" finite state space, but also to more general spaces. If that is possible, the method can be adapted to a huge range of applications.
摘要(不超过4000个字符,含空格) 隐马尔可夫模型(HMM)可以广泛应用于现实生活中,从交通模型到不同的生物和神经模型。这种与现实的契合增加了对精确有效的算法来解决滤波和平滑问题的需求。文献提供了不同的方法来计算基础模型的过滤和平滑分布,尽管当维度增加时会暴露出两个问题。首先,正如 Rebeschini、Van Handel 等人在论文中所阐述的那样。 (局部粒子滤波器能否击败维数诅咒?,2015),粒子滤波器(一种估计过滤分布的众所周知的算法)受到维数诅咒的影响。其次,即使可以以近似形式计算感兴趣的数量,维度的增长也可能使计算成本变得不可行。正如 Rebeschini、Van Handel 等人详细解释的那样。 (2015),可以通过开发具有无量纲误差的局部粒子滤波器来防止这个问题,这也具有计算成本更低的优点。研究的起点是 HMM,其中隐马尔可夫链是一个 n 0 和 1 的维序列。假设状态空间是 {0, 1} (n 次)的乘积空间,可以很容易地看出维度是 2 的 n 次方,这意味着维度灾难可能是一个问题。由于状态空间是有限的,因此在前向和后向步骤之后可以使用过滤和平滑分布。然而,这些操作涉及处理 2 到 n 行和 2 到 n 列的矩阵,从计算的角度来看,这些矩阵的成本太高。解决这个问题的一个可能的解决方法是引入一个错误来提高算法的速度。通过假设模型内部存在局部结构并考虑观测分布的特定因式分解,可以找到该近似值。首先,假设马尔可夫过程 X 在固定时间内承认局部结构,这意味着每个组件在某种程度上仅由一组邻居引起。第二个假设是固定时间内的过程 Y 是从允许非退化表示的分布 G 中得出的,这意味着存在分解的正观测密度 g。最后一个假设是初始测量的因式分解。这些假设允许将前向步骤重新定义为仅适用于尺寸减小且近似误差较低的矩阵。在确保相应的实现正常工作后,下一个目标是修改 EM 算法,使其包含模型所有参数(初始分布、转换核等)未知的情况。这个具体案例适用于交通模型。事实上,在道路网络的时间演化中,每条边都可以通过具有可以拥堵或不拥堵的值的组件来建模。当然,道路的这种状态是无法实现的,因此仅观察每条道路的汽车数量。在这种特定情况下,局部结构是一个合理的假设,因为道路中的交通仅受最近交通的影响。下一步将是使用来自现实世界的数据将该算法应用于该高速公路交通模型。作为研究的自然延续,研究该算法的泛化将会很有趣。因此,尝试将近似不仅应用于“理想”有限状态空间,而且应用于更一般的空间。如果可能的话,该方法可以适应广泛的应用。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inference in Stochastic Epidemic Models via Multinomial Approximations
通过多项式近似进行随机流行病模型的推断
Exploiting locality in high-dimensional factorial hidden Markov models
利用高维阶乘隐马尔可夫模型中的局部性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Acute sleep deprivation increases inflammation and aggravates heart failure after myocardial infarction.
Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO(2) Separation.
  • DOI:
    10.3390/membranes12121262
  • 发表时间:
    2022-12-13
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

兴趣电商企业的地方嵌入及其对当地土特产产业带动能力的影响研究
  • 批准号:
    72373158
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
自然保护地伞护物种与当地社区的空间作用机理及测度方法研究-以人鹤系统为例
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
黄河流域自然保护区管理效度对当地社会-生态耦合协调的影响与机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
适用于亚跨音速飞行器层流设计的新型当地化横流转捩预测模式研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
共享经济对当地市场现有产业发展的溢出效应研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Treatment of lupus nephritis with nanoparticles that selectively target kidney glomeruli
用选择性靶向肾小球的纳米颗粒治疗狼疮性肾炎
  • 批准号:
    10679184
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Observation of reduction bonding phenomena of transparent nanoparticles with transient thermal rectification and its application to local heating
瞬态热整流透明纳米粒子还原键合现象的观察及其在局部加热中的应用
  • 批准号:
    23H01316
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of macroscopic physical properties of non-equilibrium soft matter driven by local force
阐明局部力驱动的非平衡软物质的宏观物理性质
  • 批准号:
    22KJ2420
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Local and Abscopal Effects of Heavy Ion Beam Irradiation in Combination with Immunotherapy for Radioresistant Tumors
重离子束照射联合免疫治疗对放射抗性肿瘤的局部和远隔效应
  • 批准号:
    23K07081
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Long-acting formulations of griseofulvin for ocular neovascularization therapy
用于眼部新生血管治疗的灰黄霉素长效制剂
  • 批准号:
    10682059
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了