DEVELOPMENT OF SLOW SCAN CAMERA & INTERFACE
慢扫描相机的开发
基本信息
- 批准号:6469018
- 负责人:
- 金额:$ 10.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-05-01 至 2002-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this core TR&D project is to develop a system for
the NCMIR IVEM with the necessary enhancements in resolution, speed
and sensitivity to provide users with an electronic readout device
comparable to or better than film using a next generation of 2k x 2k
CCD imaging system . This subproject is very important to this
research program. It will allow us to improve the image acquisition
rate and precision for computerized 3-D reconstruction and
visualization of thick biological specimens. We have recently
completed the new lens coupled camera system. It has been installed
on the IVEM and is undergoing testing. There are five parts to this
project: 1) scintillating screen development: two US patents
(#5,401,964 and #5,594,253) have been issued to us including one just
issued in January, 1997. A thin foil-based P20 phosphor screen has
been made for this system by Grant Scientific according to our
patented design. The design was first described and characterized in
1994 (Fan and Ellisman, Ultramicroscopy 55:7-14, 1994) and optimized
in 1996 (Fan et al, Ultramicroscopy 66:11-19, 1994) ; 2) Lens coupling
system, designed by Optical Research Associates according to our
specifications, and manufactured by Tinsley Laboratories, was
delivered and has been installed on the IVEM. The design goal was
challenging for both the optical designer and the manufacturer, and
Tinsley had to make a modification after the lens was first delivered,
as the lens failed to meet some of the designed goals in our optical
bench test. The performance was significantly improved after the
modification. The mod EMulation transfer function (MTF) is 55% at the
Nyquist frequency, and is nearly flat across the entire field of view,
which is an area over 10 cm in diameter. The overall light
transmittance is 83%, exceeding the design goal of 80%. The
resolution and relay efficiency of the optical system match well with
that of the scintillating screen and the system delivers resolution
exceeding that possible with a fiber-optically coupled system; 3) The
CCD chip being employed is technologically more advanced than what is
commercially available and was provided as part of a collaborative
research effort with MIT's Lincoln Laboratory and the US Air Force.
This device employs very advanced technology and has 8 high bandwidth
ports which may be read out in parallel. Although only four ports are
being used in our implementation, we will still achieve a substantial
speedup as compared to our current 1k x 1k device, yet are able to
image an array more than 2x the size of our current CCD imager; 4) The
computer interface to the CCD camera controller has been designed and
implemented. The interface employs a Unix-based workstation coupled
to DataCube MV200 image processor to control the camera and to
demultiplex and assemble the image. A new graphical interface has
been designed for use of the camera. 5) Mechanical integration of the
camera components was designed in house using a suite of 3D Solid
Modeling/2D CADCAM software tools. The complete system was initially
modeled in 3D to allow for visualization and validation of total
integration prior to construction. From the final, optimized model,
engineering schematics were generated for construction. The
components of the system include: a vacuum compatible drop flange
which supports and positions the scintillator screen and leaded glass
window, adjustable lens support hardware, a mechanically isolated,
gyroscopic camera support housing which allows for sub-micron
centering and adjustment of the CCD chip, automated rotation, and
precision focusing, and a camera housing adapter which allows quick
swapping of the 2kx2k and 1k x1k camera heads. Preliminary tests
indicate that the overall performance of this imaging system is
considerably more sensitive than film and better than a
fiber-optically coupled CCD system at 400 keV (Data from Arizona State
University). A further quantitative evaluation is beginning conducted
in collaboration with Drs. John Spence and Jian Ming Zuo at Arizona
State University. We also plan to explore the use of an Application
Specific Integrated Circuit (ASIC) detector as an alternative to a CCD
for TEM imaging. The ASIC detector was developed by Dr. Xuong
Nguyen-Huu of UCSD and co-workers for X-ray crystallography
applications. We have recently tested the device for electron
detection in the energy range of 80-400 keV (Fan et al, in review by
Ultramicroscopy, 1997), and the results are very encouraging. An
ASIC-based imaging system will possess many advantages over the
CCD-based imaging systems (see Section 4A2.2). Dr. Xuong will
collaborate with us on this project.
该核心TR&D项目的目的是为
NCMIR IVEM具有必要的分辨率,速度的增强
敏感性为用户提供电子读数设备
使用下一代2K x 2k的胶片可比或更好
CCD成像系统。 这个子标记对此非常重要
研究计划。 这将使我们能够改善图像获取
计算机化3-D重建的速率和精度
厚生物标本的可视化。 我们最近有
完成了新的镜头耦合相机系统。 它已安装
在IVEM上,正在进行测试。 有五个部分
项目:1)闪烁屏幕开发:两项美国专利
(#5,401,964和#5,594,253)已向我们发了
1997年1月发行。基于箔的P20磷光屏幕具有
是根据我们的赠款科学制作的
专利设计。 首先描述并描述了该设计
1994年(Fan and Ellisman,超镜检查55:7-14,1994)并进行了优化
在1996年(Fan等人,超镜检查66:11-19,1994); 2)镜头耦合
系统,由光学研究协会设计
规格,由Tinsley Laboratories制造,是
交付并已安装在IVEM上。 设计目标是
对于光学设计师和制造商都具有挑战性,以及
镜头首次交付后,廷斯利必须进行修改,
由于镜头未能达到我们光学中的一些设计目标
台式测试。 在
修改。 mod仿真传输函数(MTF)为55%
Nyquist频率,在整个视野中几乎平坦,
直径超过10厘米的区域。 整体光
透射率为83%,超过了80%的设计目标。 这
光学系统的分辨率和继电器效率与
闪烁屏幕和系统的分辨率
超过光纤耦合系统的可能性; 3)
使用CCD芯片在技术上比什么更先进
可商购,并作为合作的一部分提供
与麻省理工学院的林肯实验室和美国空军的研究工作。
该设备采用非常先进的技术,具有8个高带宽
可以并行读取的端口。 虽然只有四个端口是
在实施中,我们仍将实现实质性
与我们当前的1K x 1k设备相比,加速
图像阵列大于当前CCD成像仪的大小超过2倍; 4)
CCD摄像头控制器的计算机接口已设计,并且
实施的。 该界面采用基于UNIX的工作站耦合
到DataCube MV200图像处理器以控制相机和
消除图像并组装图像。 一个新的图形接口具有
设计用于使用相机。 5)机械整合
相机组件是使用3D固体套件在室内设计的
建模/2D CADCAM软件工具。 完整的系统最初是
以3D建模,以允许可视化和验证
施工之前的集成。 从最终的优化模型中
生成了工程示意图进行施工。 这
系统的组件包括:真空兼容的落水法兰
支持和定位闪烁屏屏幕和铅玻璃
窗口,可调透镜支持硬件,机械隔离,
陀螺仪摄像头支撑外壳,允许亚微米
CCD芯片,自动旋转和调整
精确聚焦和相机壳体适配器,可以快速
交换2KX2K和1K X1K相机头。 初步测试
表明该成像系统的整体性能是
比电影更敏感,比
400 KEV的光纤耦合CCD系统(来自亚利桑那州的数据
大学)。 开始进行进一步的定量评估
与Drs合作。亚利桑那州的John Spence和Jian Ming Zuo
州立大学。 我们还计划探索应用程序的使用
特定的集成电路(ASIC)检测器作为CCD的替代方案
用于TEM成像。 ASIC探测器由Xuong博士开发
UCSD的Nguyen-Huu和X射线晶体学的同事
申请。 我们最近测试了电子设备
在80-400 KEV的能量范围内检测(Fan等人,在评论中
超显镜,1997年),结果非常令人鼓舞。 一个
基于ASIC的成像系统将具有许多优势
基于CCD的成像系统(请参阅第4A2.2节)。 Xuong Will博士
与我们在这个项目上合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GARY FAN其他文献
GARY FAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GARY FAN', 18)}}的其他基金
相似海外基金
INNOVATION FUNNEL FOR FETAL MONITORING CHALLENGE - COORDINATION CENTER
胎儿监护挑战的创新漏斗 - 协调中心
- 批准号:
10936562 - 财政年份:2023
- 资助金额:
$ 10.66万 - 项目类别:
Improved AED Resuscitation with Interactive CPR Coaching
通过交互式 CPR 指导改进 AED 复苏
- 批准号:
6994918 - 财政年份:2005
- 资助金额:
$ 10.66万 - 项目类别:
TV-Based Self-Management Platform for Children with Asthma
哮喘儿童电视自我管理平台
- 批准号:
6993455 - 财政年份:2005
- 资助金额:
$ 10.66万 - 项目类别:
Fast Drug Screening via Mechanics of Tissue Constructs
通过组织结构力学进行快速药物筛选
- 批准号:
6790445 - 财政年份:2004
- 资助金额:
$ 10.66万 - 项目类别:
Novel device for improving standard CPR outcomes
用于改善标准心肺复苏效果的新型设备
- 批准号:
7155658 - 财政年份:2004
- 资助金额:
$ 10.66万 - 项目类别: