DEVELOPMENT OF SLOW SCAN CAMERA & INTERFACE

慢扫描相机的开发

基本信息

  • 批准号:
    6354269
  • 负责人:
  • 金额:
    $ 11.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-05-01 至 2001-04-30
  • 项目状态:
    已结题

项目摘要

The objective of this core TR&D project is to develop a system for the NCMIR IVEM with the necessary enhancements in resolution, speed and sensitivity to provide users with an electronic readout device comparable to or better than film using a next generation of 2k x 2k CCD imaging system . This subproject is very important to this research program. It will allow us to improve the image acquisition rate and precision for computerized 3-D reconstruction and visualization of thick biological specimens. We have recently completed the new lens coupled camera system. It has been installed on the IVEM and is undergoing testing. There are five parts to this project: 1) scintillating screen development: two US patents (#5,401,964 and #5,594,253) have been issued to us including one just issued in January, 1997. A thin foil-based P20 phosphor screen has been made for this system by Grant Scientific according to our patented design. The design was first described and characterized in 1994 (Fan and Ellisman, Ultramicroscopy 55:7-14, 1994) and optimized in 1996 (Fan et al, Ultramicroscopy 66:11-19, 1994) ; 2) Lens coupling system, designed by Optical Research Associates according to our specifications, and manufactured by Tinsley Laboratories, was delivered and has been installed on the IVEM. The design goal was challenging for both the optical designer and the manufacturer, and Tinsley had to make a modification after the lens was first delivered, as the lens failed to meet some of the designed goals in our optical bench test. The performance was significantly improved after the modification. The mod EMulation transfer function (MTF) is 55% at the Nyquist frequency, and is nearly flat across the entire field of view, which is an area over 10 cm in diameter. The overall light transmittance is 83%, exceeding the design goal of 80%. The resolution and relay efficiency of the optical system match well with that of the scintillating screen and the system delivers resolution exceeding that possible with a fiber-optically coupled system; 3) The CCD chip being employed is technologically more advanced than what is commercially available and was provided as part of a collaborative research effort with MIT's Lincoln Laboratory and the US Air Force. This device employs very advanced technology and has 8 high bandwidth ports which may be read out in parallel. Although only four ports are being used in our implementation, we will still achieve a substantial speedup as compared to our current 1k x 1k device, yet are able to image an array more than 2x the size of our current CCD imager; 4) The computer interface to the CCD camera controller has been designed and implemented. The interface employs a Unix-based workstation coupled to DataCube MV200 image processor to control the camera and to demultiplex and assemble the image. A new graphical interface has been designed for use of the camera. 5) Mechanical integration of the camera components was designed in house using a suite of 3D Solid Modeling/2D CADCAM software tools. The complete system was initially modeled in 3D to allow for visualization and validation of total integration prior to construction. From the final, optimized model, engineering schematics were generated for construction. The components of the system include: a vacuum compatible drop flange which supports and positions the scintillator screen and leaded glass window, adjustable lens support hardware, a mechanically isolated, gyroscopic camera support housing which allows for sub-micron centering and adjustment of the CCD chip, automated rotation, and precision focusing, and a camera housing adapter which allows quick swapping of the 2kx2k and 1k x1k camera heads. Preliminary tests indicate that the overall performance of this imaging system is considerably more sensitive than film and better than a fiber-optically coupled CCD system at 400 keV (Data from Arizona State University). A further quantitative evaluation is beginning conducted in collaboration with Drs. John Spence and Jian Ming Zuo at Arizona State University. We also plan to explore the use of an Application Specific Integrated Circuit (ASIC) detector as an alternative to a CCD for TEM imaging. The ASIC detector was developed by Dr. Xuong Nguyen-Huu of UCSD and co-workers for X-ray crystallography applications. We have recently tested the device for electron detection in the energy range of 80-400 keV (Fan et al, in review by Ultramicroscopy, 1997), and the results are very encouraging. An ASIC-based imaging system will possess many advantages over the CCD-based imaging systems (see Section 4A2.2). Dr. Xuong will collaborate with us on this project.
该核心 TR&D 项目的目标是开发一个系统 NCMIR IVEM 在分辨率、速度方面进行了必要的增强 和灵敏度为用户提供电子读出设备 与使用下一代 2k x 2k 的胶片相当或更好 CCD成像系统。 这个子项目对此非常重要 研究计划。 它将使我们能够改进图像采集 计算机化 3D 重建的速率和精度 厚生物标本的可视化。 我们最近有 完成了新的镜头耦合相机系统。 已安装 在 IVEM 上并且正在进行测试。 这有五个部分 项目:1)闪烁屏开发:两项美国专利 (#5,401,964 和 #5,594,253)已发给我们,其中包括一份 1997年1月发布。基于薄箔的P20荧光屏已 是由 Grant Scientific 根据我们的要求为该系统制作的 专利设计。 该设计首先被描述和表征于 1994 (Fan and Ellisman, Ultramicroscopy 55:7-14, 1994) 并优化 1996 年(Fan 等人,Ultramicroscopy 66:11-19, 1994); 2) 透镜耦合 系统,由光学研究协会根据我们的设计 规格,并由廷斯利实验室制造,是 交付并已安装在IVEM上。 设计目标是 对光学设计师和制造商来说都是挑战,并且 Tinsley在镜头首次交付后不得不进行修改, 因为镜头未能达到我们光学中的一些设计目标 台架测试。 改造后性能明显提升 修改。 调制仿真传递函数 (MTF) 为 55% 奈奎斯特频率,并且在整个视场中几乎平坦, 这是一个直径超过10厘米的区域。 整体光线 透过率83%,超过80%的设计目标。 这 光学系统的分辨率和中继效率与 闪烁屏幕和系统提供的分辨率 超过光纤耦合系统所能达到的水平; 3) 的 采用的CCD芯片在技术上比现有的更先进 商业上可用,并作为合作的一部分提供 与麻省理工学院林肯实验室和美国空军的研究工作。 该设备采用非常先进的技术,具有8个高带宽 可以并行读出的端口。 虽然只有四个端口 在我们的实施中使用,我们仍然会取得实质性的成果 与我们当前的 1k x 1k 设备相比,速度有所提升,但能够 成像尺寸超过当前 CCD 成像器 2 倍的阵列; 4) 的 CCD相机控制器的计算机接口已经设计完成 实施的。 该接口采用基于 Unix 的工作站耦合 连接到 DataCube MV200 图像处理器来控制相机并 解复用并组合图像。 新的图形界面有 专为相机的使用而设计。 5)机械集成 相机组件是使用一套 3D Solid 内部设计的 建模/2D CADCAM 软件工具。 完整的系统最初是 以 3D 建模,以实现总数据的可视化和验证 施工前整合。 从最终的优化模型来看, 生成了用于施工的工程原理图。 这 该系统的组件包括: 真空兼容下降法兰 它支撑和定位闪烁体屏幕和含铅玻璃 窗口、可调节镜头支撑硬件、机械隔离、 陀螺仪相机支撑外壳,允许亚微米 CCD芯片对中及调整,自动旋转, 精确对焦和相机外壳适配器,可快速 交换 2kx2k 和 1k x1k 摄像头。 初步测试 表明该成像系统的整体性能为 比胶片更敏感,并且比胶片更好 400 keV 光纤耦合 CCD 系统(数据来自亚利桑那州立大学 大学)。 进一步的定量评估正在开始进行 与博士合作。约翰·斯宾塞 (John Spence) 和左建明 (亚利桑那州) 州立大学。 我们还计划探索应用程序的使用 专用集成电路 (ASIC) 探测器作为 CCD 的替代品 用于 TEM 成像。 ASIC探测器由Xuong博士开发 加州大学圣地亚哥分校的 Nguyen-Huu 和 X 射线晶体学同事 应用程序。 我们最近测试了该设备的电子 80-400 keV 能量范围内的检测(Fan 等人,审阅 超显微镜,1997),结果非常令人鼓舞。 一个 基于 ASIC 的成像系统将比传统的成像系统具有许多优势 基于 CCD 的成像系统(参见第 4A2.2 节)。 徐博士将 与我们合作开展这个项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GARY FAN其他文献

GARY FAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GARY FAN', 18)}}的其他基金

DEVELOPMENT OF SLOW SCAN CAMERA & INTERFACE
慢扫描相机的开发
  • 批准号:
    6469018
  • 财政年份:
    2001
  • 资助金额:
    $ 11.54万
  • 项目类别:
ENHANCEMENT OF MICROSCOPE & ITS COMPUTER CONTROL
显微镜的增强
  • 批准号:
    6469017
  • 财政年份:
    2001
  • 资助金额:
    $ 11.54万
  • 项目类别:
ENHANCEMENT OF MICROSCOPE & ITS COMPUTER CONTROL
显微镜的增强
  • 批准号:
    6354268
  • 财政年份:
    2000
  • 资助金额:
    $ 11.54万
  • 项目类别:
ENHANCEMENT OF MICROSCOPE & ITS COMPUTER CONTROL
显微镜的增强
  • 批准号:
    6220656
  • 财政年份:
    1999
  • 资助金额:
    $ 11.54万
  • 项目类别:
ENHANCEMENT OF MICROSCOPE & ITS COMPUTER CONTROL
显微镜的增强
  • 批准号:
    6121803
  • 财政年份:
    1999
  • 资助金额:
    $ 11.54万
  • 项目类别:
DEVELOPMENT OF SLOW SCAN CAMERA & INTERFACE
慢扫描相机的开发
  • 批准号:
    6121804
  • 财政年份:
    1999
  • 资助金额:
    $ 11.54万
  • 项目类别:
DEVELOPMENT OF SLOW SCAN CAMERA & INTERFACE
慢扫描相机的开发
  • 批准号:
    6220657
  • 财政年份:
    1999
  • 资助金额:
    $ 11.54万
  • 项目类别:
ENHANCEMENT OF MICROSCOPE & ITS COMPUTER CONTROL
显微镜的增强
  • 批准号:
    6282116
  • 财政年份:
    1998
  • 资助金额:
    $ 11.54万
  • 项目类别:
DEVELOPMENT OF SLOW SCAN CAMERA & INTERFACE
慢扫描相机的开发
  • 批准号:
    6282117
  • 财政年份:
    1998
  • 资助金额:
    $ 11.54万
  • 项目类别:
ENHANCEMENT OF MICROSCOPE & ITS COMPUTER CONTROL
显微镜的增强
  • 批准号:
    6252908
  • 财政年份:
    1997
  • 资助金额:
    $ 11.54万
  • 项目类别:

相似海外基金

INNOVATION FUNNEL FOR FETAL MONITORING CHALLENGE - COORDINATION CENTER
胎儿监护挑战的创新漏斗 - 协调中心
  • 批准号:
    10936562
  • 财政年份:
    2023
  • 资助金额:
    $ 11.54万
  • 项目类别:
Improved AED Resuscitation with Interactive CPR Coaching
通过交互式 CPR 指导改进 AED 复苏
  • 批准号:
    6994918
  • 财政年份:
    2005
  • 资助金额:
    $ 11.54万
  • 项目类别:
TV-Based Self-Management Platform for Children with Asthma
哮喘儿童电视自我管理平台
  • 批准号:
    6993455
  • 财政年份:
    2005
  • 资助金额:
    $ 11.54万
  • 项目类别:
Fast Drug Screening via Mechanics of Tissue Constructs
通过组织结构力学进行快速药物筛选
  • 批准号:
    6790445
  • 财政年份:
    2004
  • 资助金额:
    $ 11.54万
  • 项目类别:
Novel device for improving standard CPR outcomes
用于改善标准心肺复苏效果的新型设备
  • 批准号:
    7155658
  • 财政年份:
    2004
  • 资助金额:
    $ 11.54万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了