Uncertainty quantification and sensitivity analysis for resilient infrastructure systems
弹性基础设施系统的不确定性量化和敏感性分析
基本信息
- 批准号:ST/Y003713/1
- 负责人:
- 金额:$ 17.77万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Computational modelling provides a vital tool to support infrastructure decisions, allowing to evaluate risks and benefits of different infrastructure options on a virtual system (or "digital twin") before committing to a particular design. Model outputs though are conditional on a range of uncertain assumptions and input data, due to our incomplete or imperfect knowledge of the drivers and the properties of the system being modelled. When models are used for long-term planning, the uncertainty about the current properties and drivers of the system is compounded with further uncertainty about how these will evolve in the future. For example, when planning water infrastructure for drought resilience, we need to make a set of uncertain assumptions about the way that future climate will affect water sources and how changes in the economy, society and lifestyle will affect future water demand. Another example is the energy sector, where the growing contribution of intermittent sources such as wind and solar introduces unprecedented levels of uncertainty to the quantification of energy production potential, both in the short and long term. Overconfidence in model results and insufficient consideration of the breath of possible futures is a key obstacle to infrastructure resilience. If models are used to inform large investment decisions, they must be trustworthy and defensible. Decision-makers need to be made aware of the uncertainties affecting model output(s) and the critical assumptions that define the scope of validity of the model. Also, as uncertainty about the future is irreducible, modelling for resilience should aim at identifying designs that achieve an acceptable performance across a wide range of future scenarios, rather than designs that are optimal under any particular scenario.Uncertainty Quantification and Sensitivity Analysis (UQ&SA) is a set of generic methods that can be used to analyse the propagation of uncertainties in model and thus improve the model's construction, validation, and use for decision-making under uncertainty. UQ&SA are "model-agnostic" methodologies, meaning that they are applicable to any mathematical model regardless of the specific application domain. The goal of this project is to set the foundations for integrating UQ&SA functionalities in the DAFNI platform. We believe this is very important for DAFNI to become a platform that not only enables users to share, combine and execute models, but also enables and promotes best practices for responsible modelling.To achieve the project goal, we will develop DAFNI Workflows that use functionalities already existing in DAFNI for uncertainty propagation (the "Loop" functionality, which allows repeated executions of the same model against different input set-ups) and integrate them with existing open-source software packages for UQ&SA. In these Workflows, we will use two simple "proof-of-principle" models from the water and energy sector, so to ensure feasibility of the project within the limited timeframe, but also to produce training materials for current and future DAFNI users to learn "by example". Indeed throughout the project we will run a series of seminars and tutorial sessions on UQ&SA for early-career researchers, and develop recommendations for the DAFNI technical team on future developments needed in order to scale-up the applicability of UQ&SA to more complex models.
计算建模提供了支持基础设施决策的重要工具,允许在进行特定设计之前评估虚拟系统(或“数字孪生”)上不同基础设施选项的风险和收益。然而,由于我们对驱动因素和所建模系统的属性的了解不完整或不完善,模型输出取决于一系列不确定的假设和输入数据。当模型用于长期规划时,系统当前属性和驱动因素的不确定性与未来如何发展的进一步不确定性变得更加复杂。例如,在规划抗旱水基础设施时,我们需要对未来气候将如何影响水源以及经济、社会和生活方式的变化将如何影响未来水需求做出一系列不确定的假设。另一个例子是能源部门,风能和太阳能等间歇性能源的贡献不断增加,给能源生产潜力的量化带来了前所未有的不确定性,无论是短期还是长期。对模型结果的过度自信和对未来可能发生的情况考虑不足是基础设施弹性的主要障碍。如果模型用于为大型投资决策提供信息,那么它们必须是值得信赖且站得住脚的。决策者需要了解影响模型输出的不确定性以及定义模型有效性范围的关键假设。此外,由于未来的不确定性是不可减少的,弹性建模的目标应该是识别在各种未来场景中实现可接受性能的设计,而不是在任何特定场景下最佳的设计。不确定性量化和敏感性分析 (UQ&SA)是一组通用方法,可用于分析模型中不确定性的传播,从而改进模型的构建、验证和不确定性下决策的使用。 UQ&SA 是“模型无关”的方法,这意味着它们适用于任何数学模型,无论特定的应用领域如何。该项目的目标是为在 DAFNI 平台中集成 UQ&SA 功能奠定基础。我们相信这对于 DAFNI 成为一个平台非常重要,它不仅使用户能够共享、组合和执行模型,而且还支持和推广负责任建模的最佳实践。为了实现项目目标,我们将开发使用功能的 DAFNI 工作流程DAFNI 中已经存在用于不确定性传播的功能(“循环”功能,允许针对不同的输入设置重复执行同一模型),并将它们与 UQ&SA 的现有开源软件包集成。在这些工作流程中,我们将使用来自水和能源领域的两个简单的“原理验证”模型,以确保项目在有限时间内的可行性,同时也为当前和未来的 DAFNI 用户制作培训材料以供学习“以身作则”。事实上,在整个项目中,我们将为早期职业研究人员举办一系列关于 UQ&SA 的研讨会和辅导课程,并为 DAFNI 技术团队提供有关未来发展所需的建议,以便将 UQ&SA 的适用性扩大到更复杂的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesca Pianosi其他文献
Francesca Pianosi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francesca Pianosi', 18)}}的其他基金
WaMA-WaDiT: Water Management and Adaption based on Watershed Digital Twins
WaMA-WaDiT:基于流域数字孪生的水管理和适应
- 批准号:
EP/Y036999/1 - 财政年份:2024
- 资助金额:
$ 17.77万 - 项目类别:
Research Grant
Robust and transparent planning and operation of water resource infrastructure
稳健、透明的水资源基础设施规划和运营
- 批准号:
EP/R007330/1 - 财政年份:2017
- 资助金额:
$ 17.77万 - 项目类别:
Fellowship
相似国自然基金
高能效的移动端X-Formers轻量化技术研究
- 批准号:62302086
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
革新开放(1986)以来老挝边境土地利用变化的地缘政治经济影响量化研究
- 批准号:42371280
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
工业过程运行指标轻量化增量协同建模方法
- 批准号:62373361
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
华北平原“漏斗区”休耕政策成效量化及其地下水影响机制研究
- 批准号:42371311
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
一类球形病毒出芽动力学建模和量化分析
- 批准号:12371487
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Uncertainty quantification considering global sensitivity for seismic risk analysis of existing bridge structural systems
考虑现有桥梁结构系统地震风险分析的全局敏感性的不确定性量化
- 批准号:
20H02229 - 财政年份:2020
- 资助金额:
$ 17.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Sensitivity analysis and uncertainty quantification of chaotic systems
混沌系统的敏感性分析和不确定性量化
- 批准号:
2906619 - 财政年份:2018
- 资助金额:
$ 17.77万 - 项目类别:
Studentship
Workshop: "Sensitivity, Error and Uncertainty Quantification for Atomic, Plasma & Material Data": Stony Brook University; November 7-9, 2015
研讨会:“原子、等离子体的灵敏度、误差和不确定性量化
- 批准号:
1560572 - 财政年份:2015
- 资助金额:
$ 17.77万 - 项目类别:
Standard Grant
NSF/Sandia: Discrepancy Sensitivity for Efficiently Choosing Computer Experiments in Design and Uncertainty Quantification
NSF/桑迪亚:在设计和不确定性量化中有效选择计算机实验的差异敏感性
- 批准号:
0331145 - 财政年份:2004
- 资助金额:
$ 17.77万 - 项目类别:
Standard Grant
Sensitivity analysis and uncertainty quantification of pulverized solid fuel combustion (B08)
粉状固体燃料燃烧的敏感性分析和不确定性量化(B08)
- 批准号:
377657222 - 财政年份:
- 资助金额:
$ 17.77万 - 项目类别:
CRC/Transregios