Experimental Study of Plasma Wakefield Acceleration at VELA/CLARA Facility at Daresbury Laboratory

达斯伯里实验室 VELA/CLARA 设施的等离子体韦克场加速实验研究

基本信息

  • 批准号:
    1686189
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Plasma accelerators have made tremendous progress in the last few decades since the inception of the idea from Tajima and Dawson. Nowadays, laser wakefield accelerators (LWFA) could achieve multi-GeV level, mono-energetic electrons through millimeter to centimeter plasma cells. Electron beam driven plasma wakefield acceleration (PWFA) has demonstrated energy doubling for an ultra relativistic 42 GeV electron beam in a meter long plasma structure and recently realized the high efficiency beam acceleration at SLAC FACET facility. The accelerating gradients measured in these experiments can be in the range of 10-100 GeV/m, which are 3-4 orders of magnitude larger than that in todays' conventional RF-based particle accelerators. Since plasma wakefield accelerators hold great promise to miniature the future energy frontier machines, the research on the key issues, e.g. the ultrahigh accelerating gradients, plasma lens (plasma focusing), high transformer ratio, plasma instabilities of the plasma wakefield accelerators are critical for the new generation facility such as compact light sources and colliders based on this novel acceleration scheme. Working together with colleagues from ASTeC and the University of Strathclyde, we are currently preparing for the first UK based beam driven plasma wakefield acceleration experiment at Darebury laboratory using the VELA/CLARA beam. The first experiment will demonstrate the plasma lens strong focusing effect. The follow-up experiment will investigate other key issues as above-mentioned.The study will include full modelling of beam-plasma interaction, engineering design and manufacture of plasma cell, commissioning of the experimental facility and analysing the experimental data.
自从田岛和道森提出这个想法以来,等离子体加速器在过去的几十年里取得了巨大的进步。如今,激光尾场加速器(LWFA)可以通过毫米到厘米的等离子体细胞实现多GeV级的单能电子。电子束驱动等离子体尾场加速 (PWFA) 已证明在一米长的等离子体结构中超相对论 42 GeV 电子束的能量倍增,并且最近在 SLAC FACET 设施实现了高效束流加速。这些实验中测得的加速梯度可在 10-100 GeV/m 范围内,比当今传统的基于射频的粒子加速器大 3-4 个数量级。由于等离子体尾场加速器在微型化未来能源前沿机器方面有着巨大的前景,因此对关键问题的研究,例如等离子体尾场加速器的超高加速梯度、等离子体透镜(等离子体聚焦)、高变压器比、等离子体不稳定性对于基于这种新颖加速方案的紧凑型光源和对撞机等新一代设施至关重要。我们目前正在与 ASTeC 和斯特拉斯克莱德大学的同事合作,准备在 Darebury 实验室使用 VELA/CLARA 光束进行英国首个光束驱动等离子体尾场加速实验。第一个实验将展示等离子透镜强大的聚焦效果。后续实验将研究上述其他关键问题。研究内容包括束-等离子体相互作用的完整建模、等离子体电池的工程设计和制造、实验装置的调试以及实验数据分析。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental Observation of Plasma Wakefield Growth Driven by the Seeded Self-Modulation of a Proton Bunch.
  • DOI:
    10.1103/physrevlett.122.054801
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    M. Turner;E. Adli;Arun Ahuja;O. Apsimon;O. Apsimon;R. Apsimon;R. Apsimon;A. Bachmann;A. Bachmann;A. Bachmann;M. B. Marin;Diego Barrientos;F. Batsch;F. Batsch;F. Batsch;J. Batkiewicz;J. Bauche;V. Olsen;M. Bernardini;B. Biskup;A. Boccardi;T. Bogey;T. Bohl;C. Bracco;F. Braunmüller;S. Burger;G. Burt;G. Burt;S. Bustamante;B. Buttenschön;A. Caldwell;M. Cascella;J. Chappell;E. Chevallay;M. Chung;D. Cooke;H. Damerau;L. Deacon;L. Deubner;A. Dexter;A. Dexter;S. Doebert;J. Farmer;V. Fedosseev;G. Fior;R. Fiorito;R. Fiorito;Ricardo A. Fonseca;F. Friebel;L. Garolfi;S. Gessner;I. Gorgisyan;A. Gorn;A. Gorn;Eduardo Granados;O. Grulke;O. Grulke;E. Gschwendtner;A. Guerrero;J. Hansen;A. Helm;J. Henderson;J. Henderson;C. Hessler;W. Höfle;M. Hüther;M. Ibison;M. Ibison;L. Jensen;S. Jolly;F. Keeble;Shinseog Kim;F. Kraus;T. Lefevre;G. LeGodec;Yichen Li-;Yichen Li-;S. Liu;N. Lopes;K. Lotov;K. Lotov;L. Brun;M. Martyanov;S. Mazzoni;D. Godoy;V. A. Minakov;V. A. Minakov;James Mitchell;James Mitchell;J. Molendijk;R. Mompo;J. Moody;M. Moreira;M. Moreira;P. Muggli;P. Muggli;E. Öz;E. Ozturk;C. Mutin;C. Pasquino;A. Pardons;F. Asmus;F. Asmus;K. Pepitone;A. Perera;A. Perera;A. Petrenko;A. Petrenko;S. Pitman;S. Pitman;G. Plyushchev;G. Plyushchev;A. Pukhov;S. Rey;K. Rieger;H. Ruhl;Janet Schmidt;I. Shalimova;E. Shaposhnikova;P. Sherwood;Luís O. Silva;L. Soby;A. Sosedkin;A. Sosedkin;R. Speroni;R. Spitsyn;R. Spitsyn;P. Tuev;P. Tuev;F. Velotti;L. Verra;L. Verra;V. Verzilov;J. Vieira;H. Vincke;C. Welsch;C. Welsch;B. Williamson;B. Williamson;M. Wing;B. Woolley;G. Xia;G. Xia
  • 通讯作者:
    M. Turner;E. Adli;Arun Ahuja;O. Apsimon;O. Apsimon;R. Apsimon;R. Apsimon;A. Bachmann;A. Bachmann;A. Bachmann;M. B. Marin;Diego Barrientos;F. Batsch;F. Batsch;F. Batsch;J. Batkiewicz;J. Bauche;V. Olsen;M. Bernardini;B. Biskup;A. Boccardi;T. Bogey;T. Bohl;C. Bracco;F. Braunmüller;S. Burger;G. Burt;G. Burt;S. Bustamante;B. Buttenschön;A. Caldwell;M. Cascella;J. Chappell;E. Chevallay;M. Chung;D. Cooke;H. Damerau;L. Deacon;L. Deubner;A. Dexter;A. Dexter;S. Doebert;J. Farmer;V. Fedosseev;G. Fior;R. Fiorito;R. Fiorito;Ricardo A. Fonseca;F. Friebel;L. Garolfi;S. Gessner;I. Gorgisyan;A. Gorn;A. Gorn;Eduardo Granados;O. Grulke;O. Grulke;E. Gschwendtner;A. Guerrero;J. Hansen;A. Helm;J. Henderson;J. Henderson;C. Hessler;W. Höfle;M. Hüther;M. Ibison;M. Ibison;L. Jensen;S. Jolly;F. Keeble;Shinseog Kim;F. Kraus;T. Lefevre;G. LeGodec;Yichen Li-;Yichen Li-;S. Liu;N. Lopes;K. Lotov;K. Lotov;L. Brun;M. Martyanov;S. Mazzoni;D. Godoy;V. A. Minakov;V. A. Minakov;James Mitchell;James Mitchell;J. Molendijk;R. Mompo;J. Moody;M. Moreira;M. Moreira;P. Muggli;P. Muggli;E. Öz;E. Ozturk;C. Mutin;C. Pasquino;A. Pardons;F. Asmus;F. Asmus;K. Pepitone;A. Perera;A. Perera;A. Petrenko;A. Petrenko;S. Pitman;S. Pitman;G. Plyushchev;G. Plyushchev;A. Pukhov;S. Rey;K. Rieger;H. Ruhl;Janet Schmidt;I. Shalimova;E. Shaposhnikova;P. Sherwood;Luís O. Silva;L. Soby;A. Sosedkin;A. Sosedkin;R. Speroni;R. Spitsyn;R. Spitsyn;P. Tuev;P. Tuev;F. Velotti;L. Verra;L. Verra;V. Verzilov;J. Vieira;H. Vincke;C. Welsch;C. Welsch;B. Williamson;B. Williamson;M. Wing;B. Woolley;G. Xia;G. Xia
First dielectric wakefield experiments at Daresbury Laboratory
达斯伯里实验室的首次介电尾场实验
  • DOI:
    10.1088/1742-6596/1596/1/012015
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saveliev Y
  • 通讯作者:
    Saveliev Y
Simulations of an energy dechirper based on dielectric lined waveguides
Simulation study of an LWFA-based electron injector for AWAKE Run 2
基于 LWFA 的 AWAKE Run 2 电子注入器的仿真研究
Phase Space Manipulation of Sub-Picosecond Electron Bunches Using Dielectric Wakefield Structures
使用介电韦克场结构对亚皮秒电子束进行相空间操纵
  • DOI:
    10.18429/jacow-ipac2017-wepva021
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pacey Thomas
  • 通讯作者:
    Pacey Thomas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Products Review
  • DOI:
    10.1177/216507996201000701
  • 发表时间:
    1962-07
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
  • 通讯作者:
Farmers' adoption of digital technology and agricultural entrepreneurial willingness: Evidence from China
  • DOI:
    10.1016/j.techsoc.2023.102253
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
  • 通讯作者:
Digitization
References
Putrescine Dihydrochloride
  • DOI:
    10.15227/orgsyn.036.0069
  • 发表时间:
    1956-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

基于机器学习方法研究等离子体活性基团对微生物细胞膜的作用机制
  • 批准号:
    12375251
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于机器学习预测跨尺度等离子体微观湍流谱结构
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习算法的等离子体破裂预警模型的可解释性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习的托卡马克等离子体响应预测模型研究及其等离子体控制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
激光诱导等离子体光谱稳定性研究及其基于机器学习的数值校准
  • 批准号:
    11805126
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An experimental study of multi-ion effects on collisionless shock using electro-magnetically driven plasma flow
使用电磁驱动等离子体流的多离子效应对无碰撞冲击的实验研究
  • 批准号:
    23K13079
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Regulation of microglial function by blood-borne factors
血源性因子对小胶质细胞功能的调节
  • 批准号:
    10679408
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Senescent hepatocytes mediate reprogramming of immune cells in acute liver failure
衰老肝细胞介导急性肝衰竭中免疫细胞的重编程
  • 批准号:
    10679938
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Potential of tissue kallikreins as therapeutic targets for neuropsychiatric lupus
组织激肽释放酶作为神经精神狼疮治疗靶点的潜力
  • 批准号:
    10667764
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Chromogranin A is an aging risk factor
嗜铬粒蛋白 A 是衰老的危险因素
  • 批准号:
    10667265
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了