How do weak shocks accelerate high energy particles?

弱激波如何加速高能粒子?

基本信息

  • 批准号:
    ST/R003246/1
  • 负责人:
  • 金额:
    $ 66.64万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Shock waves are found everywhere in the Universe and are one of the most efficient ways of accelerating particles like protons and electrons. However, the conditions required to produce those shocks and accelerate particles are so extreme that they're impossible to recreate on Earth. As a result, we still don't know a lot about how these shocks accelerate particles or how they're affected by things like density or magnetic field. Most of the shocks that produce these very high energy particles are also incredibly far away in other galaxies, making them difficult to study properly. For example, while we can see a supernova shock using astronomical telescopes, it's really hard to then identify and study the particles it accelerates.However, the Earth is located close to a natural laboratory with extreme density, temperature and magnetic field variations which regularly produces large-scale shocks that shower us with energetic particles; the Sun. We have a fleet of spacecraft returning constant observations of the Sun, allowing us to see in near-real-time the sudden release of stored magnetic energy in the solar atmosphere (also called the corona). This energy release can produce bursts of radiation that we call solar flares, hurl massive bubbles of plasma called coronal mass ejections into the solar system towards the Earth and launch vast global shock waves that can travel across the Sun in under an hour. Although these shocks are so much weaker than supernovae that they shouldn't be able to accelerate any particles, they regularly produce billions of energetic particles that we can almost immediately detect at Earth. These particles can be fatal for satellites orbiting the Earth, blinding them and causing them to fail, with knock-on effects for GPS and telecommunications. With my research, I'm trying to understand why these really weak shocks occur, how they accelerate particles to incredibly high energies and how those energetic particles affect the Earth and the near-Earth environment.The Sun offers a unique opportunity to study both extreme shocks and the particles that they accelerate at the same time in unprecedented detail; we can see what happens and "touch" the resulting particles, which is something that you can't do in any other field of astrophysics. Everything about this situation is also very counterintuitive; the Sun is a pretty average star producing very weak shocks that shouldn't be able to accelerate any particles yet it manages to accelerate particles to incredibly high energies. How this happens is still an open question, and one that has implications not just for our understanding of the Sun, but also for fundamental plasma physics and space weather. If we know how this process works we might be able to predict it, which will help us to protect vulnerable spacecraft and infrastructure on Earth. On a more personal level though, working on this topic really hammers home the differences between how calm the Sun is when you look at it from the ground versus the violently active Sun producing solar eruptions which we see from space, which I just think is fascinating.
冲击波在宇宙中随处可见,是加速质子和电子等粒子的最有效方式之一。然而,产生这些冲击和加速粒子所需的条件非常极端,以至于不可能在地球上重现。因此,我们仍然不太了解这些冲击如何加速粒子或它们如何受到密度或磁场等因素的影响。大多数产生这些极高能粒子的激波在其他星系中也非常遥远,这使得它们很难正确研究。例如,虽然我们可以使用天文望远镜看到超新星冲击,但很难识别和研究它加速的粒子。然而,地球靠近一个自然实验室,具有极端的密度、温度和磁场变化,这些变化经常产生大规模的冲击给我们带来高能粒子;太阳。我们有一组航天器不断返回对太阳的观测结果,使我们能够近乎实时地看到太阳大气层(也称为日冕)中储存的磁能的突然释放。这种能量释放可以产生我们称为太阳耀斑的辐射爆发,将称为日冕物质抛射的巨大等离子体气泡抛向太阳系,向地球发射,并发射巨大的全球冲击波,可以在一小时内穿过太阳。尽管这些冲击波比超新星弱得多,因此它们不能加速任何粒子,但它们经常产生数十亿个我们几乎可以立即在地球上检测到的高能粒子。这些粒子对于绕地球运行的卫星来说可能是致命的,它们会致盲并导致卫星失效,并对 GPS 和电信产生连锁反应。通过我的研究,我试图了解为什么会发生这些非常微弱的冲击,它们如何将粒子加速到令人难以置信的高能量,以及这些高能粒子如何影响地球和近地环境。太阳提供了一个独特的机会来研究极端的冲击冲击和它们同时加速的粒子以前所未有的细节;我们可以看到发生了什么并“触摸”产生的粒子,这是天体物理学的任何其他领域都无法做到的事情。这种情况的一切也都非常违反直觉;太阳是一颗相当普通的恒星,产生的冲击波非常微弱,不应该能够加速任何粒子,但它却设法将粒子加速到令人难以置信的高能量。这是如何发生的仍然是一个悬而未决的问题,这个问题不仅对我们对太阳的理解有影响,而且对基础等离子体物理学和空间天气也有影响。如果我们知道这个过程是如何运作的,我们也许能够预测它,这将有助于我们保护地球上脆弱的航天器和基础设施。不过,从更个人的角度来看,对这个主题的研究确实让我们明白了从地面观察太阳时的平静程度与我们从太空中看到的产生太阳喷发的剧烈活跃的太阳之间的差异,我认为这很有趣。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Observational Evidence of S-Web Source of the Slow Solar Wind
慢速太阳风 S-Web 源的观测证据
  • DOI:
    http://dx.10.48550/arxiv.2303.12192
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baker D
  • 通讯作者:
    Baker D
Plasma Upflows Induced by Magnetic Reconnection Above an Eruptive Flux Rope
喷发通量绳上方磁重联引起的等离子体上流
  • DOI:
    http://dx.10.1007/s11207-021-01849-7
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Baker D
  • 通讯作者:
    Baker D
Coordination within the remote sensing payload on the Solar Orbiter mission
太阳轨道飞行器任务遥感有效载荷内的协调
  • DOI:
    http://dx.10.1051/0004-6361/201937032
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Auchère F
  • 通讯作者:
    Auchère F
Transient Inverse-FIP Plasma Composition Evolution within a Solar Flare
太阳耀斑内瞬态逆 FIP 等离子体成分演化
  • DOI:
    http://dx.10.3847/1538-4357/ab07c1
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baker D
  • 通讯作者:
    Baker D
Plasma Upflows Induced by Magnetic Reconnection Above an Eruptive Flux Rope
喷发通量绳上方磁重联引起的等离子体上流
  • DOI:
    http://dx.10.48550/arxiv.2106.16137
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baker D
  • 通讯作者:
    Baker D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Long其他文献

Informing the Debate
为辩论提供信息
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Hula;David Long;Thomas C. Voice
  • 通讯作者:
    Thomas C. Voice
The maize transposable element system Ac/Ds as a mutagen in Arabidopsis: identification of an albino mutation induced by Ds insertion.
玉米转座元件系统 Ac/Ds 作为拟南芥诱变剂:鉴定 Ds 插入诱导的白化突变。
Stress-related changes to immune cells in the skin prior to wounding may impair subsequent healing
受伤前皮肤中与压力相关的免疫细胞变化可能会损害随后的愈合
  • DOI:
    10.1016/j.bbi.2015.06.011
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Koschwanez;M. Vurnek;J. Weinman;J. Tarlton;C. Whiting;Satya Amirapu;Sarah Colgan;David Long;P. Jarrett;E. Broadbent
  • 通讯作者:
    E. Broadbent
Factors Influencing Medication Errors in the Prehospital Paramedic Environment: A Mixed Method Systematic Review
院前护理人员环境中影响用药错误的因素:混合方法系统评价
  • DOI:
    10.1080/10903127.2022.2068089
  • 发表时间:
    2022-05-17
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Dennis Walker;Clint Moloney;B. SueSee;Renee Sharples;Rosanna Blackman;David Long;X. Hou
  • 通讯作者:
    X. Hou
Mechanical and electromechanical devices
机械和机电设备
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Cowan;Martin D. Smith;Vicky Gardiner;P. Horwood;Christopher Morris;T. Holsgrove;Tori Mayhew;David Long;M. Hillman
  • 通讯作者:
    M. Hillman

David Long的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Long', 18)}}的其他基金

RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
  • 批准号:
    2327466
  • 财政年份:
    2024
  • 资助金额:
    $ 66.64万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
  • 批准号:
    2327466
  • 财政年份:
    2024
  • 资助金额:
    $ 66.64万
  • 项目类别:
    Standard Grant
How do weak shocks accelerate high energy particles?
弱激波如何加速高能粒子?
  • 批准号:
    ST/R003246/2
  • 财政年份:
    2023
  • 资助金额:
    $ 66.64万
  • 项目类别:
    Fellowship
Using microinjections and flow to enhance maturation of blood vessel organoids into regenerative medicine tools
使用显微注射和流动促进血管类器官成熟为再生医学工具
  • 批准号:
    MR/X503113/1
  • 财政年份:
    2022
  • 资助金额:
    $ 66.64万
  • 项目类别:
    Research Grant
Collaborative Research: Investigating STEM Teacher Preparation and Rural Teacher Persistence and Retention
合作研究:调查 STEM 教师准备和农村教师的坚持和保留
  • 批准号:
    2050095
  • 财政年份:
    2021
  • 资助金额:
    $ 66.64万
  • 项目类别:
    Standard Grant
Bridging the gap to translation by understanding and preventing diabetic vascular complications using human organoids
通过使用人体类器官了解和预防糖尿病血管并发症来缩小翻译差距
  • 批准号:
    MR/T032251/1
  • 财政年份:
    2020
  • 资助金额:
    $ 66.64万
  • 项目类别:
    Research Grant
Preparing Secondary Teachers of Mathematics and Science in Rural Districts
培养农村中学数学和科学教师
  • 批准号:
    1660721
  • 财政年份:
    2017
  • 资助金额:
    $ 66.64万
  • 项目类别:
    Continuing Grant
Investigating the renal microvasculature in polycystic kidney disease
研究多囊肾病的肾脏微血管系统
  • 批准号:
    MR/P018629/1
  • 财政年份:
    2017
  • 资助金额:
    $ 66.64万
  • 项目类别:
    Research Grant
North Sea Interactive: A decision-support tool to guide environmental monitoring by the oil and gas industry
North Sea Interactive:指导石油和天然气行业环境监测的决策支持工具
  • 批准号:
    NE/L008181/1
  • 财政年份:
    2014
  • 资助金额:
    $ 66.64万
  • 项目类别:
    Research Grant
The role of podocyte thymosin-beta4 in the healthy and diseased glomerulus
足细胞胸腺素-β4 在健康和患病肾小球中的作用
  • 批准号:
    MR/J003638/1
  • 财政年份:
    2012
  • 资助金额:
    $ 66.64万
  • 项目类别:
    Research Grant

相似国自然基金

信用债市场做市商管理和摩擦识别:基于拓展的搜寻匹配模型分析
  • 批准号:
    72303125
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于达文波特星形酵母Do18强化发酵的糟带鱼生物胺生物调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PO-DGT原理的沉积物微界面pH-DO-磷-重金属的精细化同步成像技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
斜交斜做正交异性波纹钢拱壳的翘曲与畸变效应及整体稳定性分析
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
期权高阶矩风险溢价模型:基于做市商期权定价风险的理论建模与实证分析
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 66.64万
  • 项目类别:
    Fellowship
Why Do Breeders Tolerate Non-breeders In Animal Societies?
为什么动物社会中的饲养者容忍非饲养者?
  • 批准号:
    2333286
  • 财政年份:
    2024
  • 资助金额:
    $ 66.64万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: OCE-PRF: Do dead shells make good homes? Assessing the Development, Stability, and Evolution of Shell Gravel Habitats Across Space and Time
博士后奖学金:OCE-PRF:死去的贝壳能成为美好的家园吗?
  • 批准号:
    2307502
  • 财政年份:
    2024
  • 资助金额:
    $ 66.64万
  • 项目类别:
    Standard Grant
Do oxidative breaks accumulate at gene regulatory regions in disease?
疾病中的基因调控区域是否会积累氧化断裂?
  • 批准号:
    MR/Y000021/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.64万
  • 项目类别:
    Research Grant
How do early-life infectious and nutritional exposures characteristic of tropical Africa impact subsequent cardiovascular disease risk?
热带非洲特征的早期感染和营养暴露如何影响随后的心血管疾病风险?
  • 批准号:
    MR/Y013948/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.64万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了