Experimental Particle Physics at the University of Edinburgh

爱丁堡大学实验粒子物理

基本信息

  • 批准号:
    ST/S000828/1
  • 负责人:
  • 金额:
    $ 310.22万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

The Edinburgh Experimental Particle Physics group is currently working in three different running experiments and we are also working on several future projects.The ATLAS experiment at the Large Hadron Collider (LHC): ATLAS is one of two detectors able to study a wide variety of particles created from the collision of protons at the highest energies ever created, and it addresses fundamental questions. The most well known is that of the origin of mass. The beautiful symmetry which underlies our understanding of particle interactions inherently demands that all particles are massless. This cannot be the case, and the elegant solution put forward is now known as the Higgs mechanism. The discovery of the Higgs boson has verified this, and now we must measure its properties in great detail. Another area addressed by ATLAS is the search for new heavy particles such as new heavy Higgs like particles or supersymmetric particles, which are predicted in models trying to address shortcomings of the Standard Model, such as why their is dark matter.The LHCb experiment at the LHC. Prior to the 1960s, it had been thought that matter and anti-matter would behave in the same way. However, it was discovered that this symmetry was violated, and that matter does not behave in an identical way to anti-matter. This is embodied in the phenomenon of CP violation and is essential to the understanding of the early universe. Shortly after the big bang there were equal amounts of matter and anti-matter. During expansion and cooling, matter and anti-matter would have annihilated into photons to leave a universe full of radiation, but no stars and galaxies. It was shown in 1967 by Sakarov that if three conditions, including CP violation, were met, then it would be possible for a small imbalance of matter over anti-matter to accrue, which would be sufficient to explain the existence of the universe. LHCb measures differences (CP violation) in behaviour of particles and antiparticle with at least one b or anti-b quark and searches for very rare decays of these particles, which could be affected by heavy unobserved particles. The LUX experiment, which is the current world-leading apparatus searching for dark matter. It is well known that some 27% of the Universe is comprised of Dark Matter - that is matter of some form which does not interact in a way which produces radiation, or other easy to observe signatures. There are many theoretical candidates and resolution of this mystery must include the direct detection of our own galactic dark matter. Thermal production of Weakly Interacting Massive Particles in the early universe naturally results in the correct dark matter abundance today, and most supersymmetry models mentioned earlier contain such particles. Many other well-motivated theories also invoke particles that may be searched for. We are also working hard on the design, development and construction of the upgraded detectors at the LHC for around 2020. The intensity of the beams will be increased and the data rates recorded by the detectors will increase by orders of magnitude. This requires building new detectors for precisely measuring trajectories of longlived particles, for measuring Cherenkov photons to determine their speed, and faster and more powerful simulation, and new ways to handle the massive data rates. We are also constructing and operating the LUX-ZEPLIN project, expected to dominate direct searches for dark matter in the next decade. We work on simulations, control systems for the 10 tonnes of liquid xenon, and analysis.We have recently started an activity neutrino physics by joining both the DUNE and Hyper-K experiments to be constructed. One of the most interesting fact of nature is that there are only three species of neutrinos, which until recently were thought to be massless. It is important to measure precisely the "mixing" between the species and to search for CP violation in neutrinos.
爱丁堡实验粒子物理小组目前正在进行三个不同的运行实验,我们还致力于几个未来的项目。大型强子对撞机 (LHC) 的 ATLAS 实验:ATLAS 是能够研究多种粒子的两个探测器之一它是由质子在有史以来最高能量下碰撞而产生的,它解决了基本问题。最著名的是质量的起源。我们对粒子相互作用的理解背后的美丽对称性本质上要求所有粒子都是无质量的。事实并非如此,所提出的优雅解决方案现在被称为希格斯机制。希格斯玻色子的发现已经证实了这一点,现在我们必须详细测量它的特性。 ATLAS 解决的另一个领域是寻找新的重粒子,例如新的重希格斯粒子或超对称粒子,这些粒子是在模型中预测的,试图解决标准模型的缺点,例如为什么它们是暗物质。大型强子对撞机。 20 世纪 60 年代之前,人们一直认为物质和反物质的行为方式相同。然而,人们发现这种对称性被破坏了,物质的行为方式与反物质的行为方式并不相同。这体现在CP破坏现象中,对于理解早期宇宙至关重要。大爆炸后不久,物质和反物质的数量相等。在膨胀和冷却过程中,物质和反物质会湮灭成光子,留下充满辐射的宇宙,但没有恒星和星系。萨卡罗夫在 1967 年证明,如果满足包括 CP 破坏在内的三个条件,那么就有可能出现物质与反物质之间的微小不平衡,这足以解释宇宙的存在。 LHCb 测量至少具有一个 b 或反 b 夸克的粒子和反粒子行为的差异(CP 破坏),并寻找这些粒子的非常罕见的衰变,这些衰变可能受到未观测到的重粒子的影响。 LUX实验,是目前世界领先的寻找暗物质的装置。众所周知,宇宙约 27% 由暗物质组成,暗物质是某种形式的物质,不会以产生辐射或其他易于观察的特征的方式相互作用。有许多理论候选者,解决这个谜团必须包括直接探测我们自己的银河暗物质。早期宇宙中弱相互作用大质量粒子的热产生自然会导致今天正确的暗物质丰度,并且前面提到的大多数超对称模型都包含此类粒子。许多其他动机良好的理论也引用了可以搜索的粒子。我们还在努力设计、开发和建造大型强子对撞机的升级探测器,预计到2020年左右。光束强度将增加,探测器记录的数据速率将提高几个数量级。这需要建造新的探测器来精确测量长寿命粒子的轨迹,测量切伦科夫光子以确定其速度,以及更快、更强大的模拟,以及处理海量数据速率的新方法。我们还在建设和运营 LUX-ZEPLIN 项目,预计将在未来十年主导暗物质的直接搜索。我们致力于 10 吨液态氙的模拟、控制系统和分析。最近,我们通过加入即将建造的 DUNE 和 Hyper-K 实验,开始了活动中微子物理研究。自然界最有趣的事实之一是,只有三种中微子,直到最近,它们还被认为是无质量的。精确测量物种之间的“混合”并寻找中微子中的CP破坏非常重要。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment
LUX-ZEPLIN (LZ) 实验的第一个暗物质搜索结果
  • DOI:
    http://dx.10.48550/arxiv.2207.03764
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aalbers J
  • 通讯作者:
    Aalbers J
Enhancing the sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment to low energy signals
增强 LUX-ZEPLIN (LZ) 暗物质实验对低能量信号的灵敏度
  • DOI:
    http://dx.10.48550/arxiv.2101.08753
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akerib D
  • 通讯作者:
    Akerib D
First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment.
LUX-ZEPLIN (LZ) 实验的第一个暗物质搜索结果。
  • DOI:
    http://dx.10.1103/physrevlett.131.041002
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Aalbers J
  • 通讯作者:
    Aalbers J
Background Determination for the LUX-ZEPLIN (LZ) Dark Matter Experiment
LUX-ZEPLIN (LZ) 暗物质实验的背景测定
  • DOI:
    http://dx.10.48550/arxiv.2211.17120
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aalbers J
  • 通讯作者:
    Aalbers J
Cosmogenic production of $^{37}$Ar in the context of the LUX-ZEPLIN experiment
LUX-ZEPLIN 实验背景下 $^{37}$Ar 的宇宙生成
  • DOI:
    http://dx.10.48550/arxiv.2201.02858
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aalbers J
  • 通讯作者:
    Aalbers J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Franz Muheim其他文献

Franz Muheim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Franz Muheim', 18)}}的其他基金

LHCb Upgrade II: preconstruction for the ultimate LHC flavour physics experiment
LHCb 升级 II:终极 LHC 风味物理实验的预构建
  • 批准号:
    ST/X006484/1
  • 财政年份:
    2024
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
LHCb Upgrade 2 bridging Oct 2023 - March 2024
LHCb 升级 2 桥接 2023 年 10 月 - 2024 年 3 月
  • 批准号:
    ST/Y005570/1
  • 财政年份:
    2023
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
LHCb Upgrade II: Maximising HL-LHC Discovery Potential
LHCb 升级 II:最大化 HL-LHC 发现潜力
  • 批准号:
    ST/V003399/1
  • 财政年份:
    2021
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
LHCb Upgrade II: Maximising HL-LHC Discovery Potential (Bridging Funding)
LHCb 升级 II:最大化 HL-LHC 发现潜力(过渡资金)
  • 批准号:
    ST/V003070/1
  • 财政年份:
    2020
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
DUNE: Pre-Construction Phase
沙丘:施工前阶段
  • 批准号:
    ST/R000115/1
  • 财政年份:
    2017
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
PPGP Capital Equipment 2017 - 2019
PPGP 资本设备 2017 - 2019
  • 批准号:
    ST/P005810/1
  • 财政年份:
    2017
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
PPGP Capital Equipment 2015 - 2019
PPGP 资本设备 2015 - 2019
  • 批准号:
    ST/N001257/1
  • 财政年份:
    2015
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
Experimental Particle Physics at the University of Edinburgh
爱丁堡大学实验粒子物理
  • 批准号:
    ST/N000269/1
  • 财政年份:
    2015
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
Capital Equipment for Laboratory Infrastructure
实验室基础设施的资本设备
  • 批准号:
    ST/L003503/1
  • 财政年份:
    2014
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
LHCb Ugrade: Beyond the Energy Frontier
LHCb 升级:超越能源前沿
  • 批准号:
    ST/L003538/1
  • 财政年份:
    2014
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant

相似国自然基金

基于等离激元纳米粒子动态组装自振荡体系的物理神经网络的设计与构建
  • 批准号:
    22372133
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于多波长偏振扫描激光雷达和物理光学近似的卷云冰晶粒子取向规律研究
  • 批准号:
    42375122
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于粒子散射层析重构与嵌入物理约束神经网络的三维湍流场即时重建方法研究
  • 批准号:
    52376160
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
非球形粒子对气溶胶微物理特性反演与辐射效应评估准确性的影响研究
  • 批准号:
    42305082
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于子类间物理差异的耀变体喷流粒子加速机制研究
  • 批准号:
    12263009
  • 批准年份:
    2022
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Experimental Particle Physics with a Focus on Neutrino Physics
以中微子物理为重点的实验粒子物理
  • 批准号:
    2883567
  • 财政年份:
    2023
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Studentship
Experimental Particle Physics at the University of Edinburgh
爱丁堡大学实验粒子物理
  • 批准号:
    ST/X005984/1
  • 财政年份:
    2023
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
Mechanisms of HIV fitness and drug resistance inferred from high-resolution molecular dynamics and sequence co-variation models
从高分辨率分子动力学和序列共变模型推断出 HIV 适应性和耐药性的机制
  • 批准号:
    10750627
  • 财政年份:
    2023
  • 资助金额:
    $ 310.22万
  • 项目类别:
Responsive RAs for the Birmingham Experimental Particle Physics Programme
伯明翰实验粒子物理项目的响应式 RA
  • 批准号:
    ST/X005976/1
  • 财政年份:
    2023
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
Improving phage-based medicine with immunoengineering
通过免疫工程改进基于噬菌体的医学
  • 批准号:
    10572011
  • 财政年份:
    2023
  • 资助金额:
    $ 310.22万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了