Manchester Particle Theory Consolidated Grant 2022 : Particle Physics in Colliders and the Cosmos

曼彻斯特粒子理论综合资助 2022:对撞机和宇宙中的粒子物理学

基本信息

  • 批准号:
    ST/X00077X/1
  • 负责人:
  • 金额:
    $ 98.72万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Particle physics has an ambitious goal : to understand our Universe at the most fundamental level. This means discovering all the elementary particles which are the ultimate building blocks of matter, and understanding the laws that govern their interactions. The current theory is known as the Standard Model of particle physics and it has enjoyed decades of remarkable success in explaining experimental data from all the high-energy particle collider experiments to date, including data from the current LHC at CERN. Yet it is also abundantly clear that there exists physics beyond the Standard Model which has eluded us and awaits discovery. For instance it is known that a large fraction of the material Universe is made up of "dark matter" which cannot be explained within the Standard Model. Our scientists are experts in Standard Model physics as well as in theories of particle physics beyond the Standard Model and their possible manifestation in colliders and cosmological data. We propose to exploit this expertise to maximise the prospects for discovery of new physics.One of the main routes to discovery involves confronting precise LHC data with equally precise theoretical predictions to look for deviations from the current theory, which would signal new physics. The landmark discovery of the Higgs boson, which deals with the origin of mass, offers an exciting avenue for further exploration. Often described as the last piece of the Standard Model jigsaw, the true nature of this particle is yet to become clear, and any deviation from the textbook Higgs boson could signal new physics. Our expertise in the theory of strong interactions (QCD) is critical for such studies at the LHC, which smashes together protons at high energies and where strong interactions are all pervasive. We specialise in the construction of algorithms which derive from QCD and lead to a full computer simulation of LHC collisions that can be directly compared to data. One of the proposed aims of our research is to design novel QCD based algorithms which improve the current state of the art in a variety of ways. We are also experts in the physics of "jets" which are formed in LHC collisions. In our proposal we aim to develop new methods that will enable us to distinguish jets produced by Standard Model particles from those arising from new particles, thereby enhancing the discovery potential of the LHC.If deviations from Standard Model expectations are seen in experimental data, we need to be able to interpret them in terms of theories of physics beyond the Standard Model. Our proposed research involves the continued construction of compelling models of new physics and investigating their signatures at the LHC. Another part of our research consists of actively pursuing some of the key questions that the Standard Model has left unanswered. One such question concerns the excess of matter over antimatter in our Universe and we propose to investigate directly related questions using the latest LHC data. Another direction involves searches for new particles, at colliders and elsewhere, that might be candidates for dark matter. Our scientists, with expertise in theories of dark matter, propose to study LHC data together with astrophysical observations and dedicated dark matter searches in order to discover the origin of dark matter. Yet another area where the Standard Model is inadequate is for explaining the "dark energy" that is responsible for the accelerated expansion of the Universe, for which there is overwhelming evidence. We propose to study dark energy theories and to develop them further, alongside their interplay with dark matter theories. All our proposed work involves combining cutting-edge theoretical ideas and techniques with rigorous methodology and the most precise data from colliders and cosmology. We thus believe that achievement of our goals will equate to scientific progress that shall be of lasting value to our field.
粒子物理学有一个雄心勃勃的目标:从最基本的层面理解我们的宇宙。这意味着发现作为物质最终组成部分的所有基本粒子,并理解控制它们相互作用的定律。当前的理论被称为粒子物理学的标准模型,几十年来,它在解释迄今为止所有高能粒子对撞机实验的实验数据方面取得了巨大的成功,其中包括来自欧洲核子研究组织当前大型强子对撞机的数据。然而,同样非常清楚的是,标准模型之外还存在着物理学,它一直困扰着我们,等待着我们去发现。例如,众所周知,物质宇宙的很大一部分是由“暗物质”组成的,这无法在标准模型中解释。我们的科学家是标准模型物理学以及标准模型之外的粒子物理学理论及其在对撞机和宇宙学数据中可能表现的专家。我们建议利用这些专业知识来最大限度地扩大发现新物理学的前景。发现的主要途径之一涉及将精确的大型强子对撞机数据与同样精确的理论预测进行比较,以寻找与当前理论的偏差,这将标志着新物理学的出现。希格斯玻色子的里程碑式发现涉及质量起源,为进一步探索提供了令人兴奋的途径。这种粒子通常被描述为标准模型拼图的最后一块,其真正本质尚未明朗,任何与教科书希格斯玻色子的偏差都可能预示着新的物理学。我们在强相互作用(QCD)理论方面的专业知识对于大型强子对撞机的此类研究至关重要,大型强子对撞机以高能量将质子粉碎在一起,并且强相互作用无处不在。我们专注于构建源自 QCD 的算法,并对大型强子对撞机碰撞进行完整的计算机模拟,并可直接与数据进行比较。我们研究的目标之一是设计新颖的基于 QCD 的算法,以多种方式改进当前的技术水平。我们也是大型强子对撞机碰撞中形成的“喷流”物理学方面的专家。在我们的提案中,我们的目标是开发新方法,使我们能够区分标准模型粒子产生的射流和新粒子产生的射流,从而增强大型强子对撞机的发现潜力。如果在实验数据中发现与标准模型预期的偏差,我们需要能够用标准模型之外的物理理论来解释它们。我们提出的研究涉及继续构建令人信服的新物理学模型并研究它们在大型强子对撞机上的特征。我们研究的另一部分包括积极探索标准模型未解答的一些关键问题。其中一个问题涉及宇宙中物质相对于反物质的过量,我们建议使用最新的大型强子对撞机数据来研究直接相关的问题。另一个方向涉及在对撞机和其他地方寻找可能是暗物质候选者的新粒子。我们的科学家拥有暗物质理论方面的专业知识,建议将大型强子对撞机数据与天体物理观测和专门的暗物质搜索结合起来研究,以发现暗物质的起源。标准模型的另一个不足之处是解释导致宇宙加速膨胀的“暗能量”,对此有压倒性的证据。我们建议研究暗能量理论并进一步发展它们,以及它们与暗物质理论的相互作用。我们提出的所有工作都涉及将前沿的理论思想和技术与严格的方法论以及来自对撞机和宇宙学的最精确的数据相结合。因此,我们相信,我们目标的实现将等同于科学进步,这对我们的领域具有持久的价值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mrinal Dasgupta其他文献

Mrinal Dasgupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于粒子模拟和机器学习方法的单链动态拓扑缠结的理论研究
  • 批准号:
    22373022
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
反应堆芯部燃烧等离子体alpha粒子输运及无碰撞加热机理的理论探索
  • 批准号:
    12275236
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
胺盐形成的纳米颗粒物的臭氧化机制及其对新粒子生成贡献的理论模拟研究
  • 批准号:
    42277081
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
弯曲时空量子场论和粒子探测器相互作用的理论探索
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
荷电粒子系近场热辐射传热特性及分析理论
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of the pair-density functional theory for superconductors
超导体对密度泛函理论的发展
  • 批准号:
    23K03250
  • 财政年份:
    2023
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Toward a scale invariant theory for the early Universe and elementary particles
早期宇宙和基本粒子的尺度不变理论
  • 批准号:
    23K03383
  • 财政年份:
    2023
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of heating and particle acceleration on collisionless shocks with ground experiment, theory, and high energy resolution X-ray observations
利用地面实验、理论和高能量分辨率 X 射线观测研究无碰撞冲击的加热和粒子加速
  • 批准号:
    23H01211
  • 财政年份:
    2023
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research in Particle Theory, Cosmology, and Quantum Gravity
粒子论、宇宙学和量子引力研究
  • 批准号:
    2310429
  • 财政年份:
    2023
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Continuing Grant
Particle Physics - Theory, Quantum Field Theory
粒子物理-理论、量子场论
  • 批准号:
    2855977
  • 财政年份:
    2023
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了