Manchester Particle Theory Consolidated Grant 2022 : Particle Physics in Colliders and the Cosmos

曼彻斯特粒子理论综合资助 2022:对撞机和宇宙中的粒子物理学

基本信息

  • 批准号:
    ST/X00077X/1
  • 负责人:
  • 金额:
    $ 98.72万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Particle physics has an ambitious goal : to understand our Universe at the most fundamental level. This means discovering all the elementary particles which are the ultimate building blocks of matter, and understanding the laws that govern their interactions. The current theory is known as the Standard Model of particle physics and it has enjoyed decades of remarkable success in explaining experimental data from all the high-energy particle collider experiments to date, including data from the current LHC at CERN. Yet it is also abundantly clear that there exists physics beyond the Standard Model which has eluded us and awaits discovery. For instance it is known that a large fraction of the material Universe is made up of "dark matter" which cannot be explained within the Standard Model. Our scientists are experts in Standard Model physics as well as in theories of particle physics beyond the Standard Model and their possible manifestation in colliders and cosmological data. We propose to exploit this expertise to maximise the prospects for discovery of new physics.One of the main routes to discovery involves confronting precise LHC data with equally precise theoretical predictions to look for deviations from the current theory, which would signal new physics. The landmark discovery of the Higgs boson, which deals with the origin of mass, offers an exciting avenue for further exploration. Often described as the last piece of the Standard Model jigsaw, the true nature of this particle is yet to become clear, and any deviation from the textbook Higgs boson could signal new physics. Our expertise in the theory of strong interactions (QCD) is critical for such studies at the LHC, which smashes together protons at high energies and where strong interactions are all pervasive. We specialise in the construction of algorithms which derive from QCD and lead to a full computer simulation of LHC collisions that can be directly compared to data. One of the proposed aims of our research is to design novel QCD based algorithms which improve the current state of the art in a variety of ways. We are also experts in the physics of "jets" which are formed in LHC collisions. In our proposal we aim to develop new methods that will enable us to distinguish jets produced by Standard Model particles from those arising from new particles, thereby enhancing the discovery potential of the LHC.If deviations from Standard Model expectations are seen in experimental data, we need to be able to interpret them in terms of theories of physics beyond the Standard Model. Our proposed research involves the continued construction of compelling models of new physics and investigating their signatures at the LHC. Another part of our research consists of actively pursuing some of the key questions that the Standard Model has left unanswered. One such question concerns the excess of matter over antimatter in our Universe and we propose to investigate directly related questions using the latest LHC data. Another direction involves searches for new particles, at colliders and elsewhere, that might be candidates for dark matter. Our scientists, with expertise in theories of dark matter, propose to study LHC data together with astrophysical observations and dedicated dark matter searches in order to discover the origin of dark matter. Yet another area where the Standard Model is inadequate is for explaining the "dark energy" that is responsible for the accelerated expansion of the Universe, for which there is overwhelming evidence. We propose to study dark energy theories and to develop them further, alongside their interplay with dark matter theories. All our proposed work involves combining cutting-edge theoretical ideas and techniques with rigorous methodology and the most precise data from colliders and cosmology. We thus believe that achievement of our goals will equate to scientific progress that shall be of lasting value to our field.
粒子物理具有雄心勃勃的目标:在最基本的水平上了解我们的宇宙。这意味着发现所有是物质的最终基础的基本粒子,并了解控制其相互作用的法律。当前的理论被称为粒子物理学的标准模型,它在解释迄今为止所有高能粒子对撞机实验的实验数据方面取得了巨大的成功,包括来自CERN当前LHC的数据。然而,也很清楚,除了标准模型外,还存在物理学,该模型已经避开了我们并等待了发现。例如,众所周知,材料宇宙的很大一部分是由“暗物质”组成的,这些暗物质无法在标准模型中解释。我们的科学家是标准模型物理学的专家以及粒子物理学理论以外的标准模型及其在山脉和宇宙学数据中的表现。我们建议利用这一专业知识,以最大程度地发现新物理学的前景。发现的主要途径涉及与精确的LHC数据与同样精确的理论预测,以寻找与当前理论的偏差,这将表明新的物理学。涉及弥撒起源的希格斯玻色子的具有里程碑意义的发现为进一步的探索提供了令人兴奋的途径。通常被描述为标准模型拼图的最后一部分,该粒子的真实性质尚未变得清晰,并且与教科书higgs玻色子的任何偏差都可能向新的物理学发出信号。我们在强相互作用理论(QCD)方面的专业知识对于LHC的此类研究至关重要,LHC将质子粉碎为高能,而强烈的相互作用都普遍存在。我们专注于构建从QCD得出的算法,并导致对LHC碰撞的完整计算机模拟,可以直接将其与数据进行比较。我们研究的拟议目的之一是设计基于QCD的新算法,以各种方式改善当前的最新技术状态。我们还是LHC碰撞中形成的“喷气机”物理学的专家。在我们的提案中,我们旨在开发新方法,使我们能够区分标准模型粒子与新粒子引起的喷头,从而增强LHC的发现潜力。我们提出的研究涉及继续建立引人注目的新物理学模型,并在LHC调查其签名。我们研究的另一部分包括积极提出标准模型未解决的一些关键问题。一个这样的问题涉及我们宇宙中反物质的物质过剩,我们建议使用最新的LHC数据进行直接相关的问题。另一个方向涉及在山脉和其他地方寻找新粒子的搜索,这可能是暗物质的候选者。我们的科学家在暗物质理论方面具有专业知识,建议研究LHC数据以及天体物理学观察和专用的暗物质搜索,以发现暗物质的起源。标准模型不足的另一个领域是为了解释导致宇宙加速膨胀的“黑暗能量”,为此有大量证据。我们建议研究暗能量理论,并进一步发展它们,并与他们与暗物质理论的相互作用。我们所有提出的工作涉及将最先进的理论思想和技术与严格的方法和攻击者和宇宙学最精确的数据相结合。因此,我们认为,实现目标将等同于科学进步,这对我们的领域具有持久的价值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mrinal Dasgupta其他文献

156 Comprehensive tissue banking: An Edmonton perspective
  • DOI:
    10.1016/j.cryobiol.2013.09.162
  • 发表时间:
    2013-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tumelo Mokoena;Teresa Fernandez;Mike Bentley;Mrinal Dasgupta;Jelena Holovati
  • 通讯作者:
    Jelena Holovati
C-21: Clinical banking of amniotic membrane allografts
  • DOI:
    10.1016/j.cryobiol.2014.09.308
  • 发表时间:
    2014-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jelena L. Holovati;Natasha M.J. Perepelkin;Haiyan Jiao;Tumelo Mokoena;Teresa Fernandez;Mike Bentley;Mrinal Dasgupta;L.U. Ross-Rodriguez
  • 通讯作者:
    L.U. Ross-Rodriguez

Mrinal Dasgupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

强子对撞机上一对希格斯粒子产生和衰变过程的精确理论预言
  • 批准号:
    12375076
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
大气中酰胺类化合物对亚硝酸及新粒子生成影响规律的理论研究
  • 批准号:
    22306127
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
用于肿瘤精准治疗的氧化铁纳米粒子及其与配体相互作用的理论研究
  • 批准号:
    12374174
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
基于粒子模拟和机器学习方法的单链动态拓扑缠结的理论研究
  • 批准号:
    22373022
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
电子束等离子体放电中强朗缪尔湍流的三维粒子模拟与理论研究
  • 批准号:
    12305223
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of the pair-density functional theory for superconductors
超导体对密度泛函理论的发展
  • 批准号:
    23K03250
  • 财政年份:
    2023
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Toward a scale invariant theory for the early Universe and elementary particles
早期宇宙和基本粒子的尺度不变理论
  • 批准号:
    23K03383
  • 财政年份:
    2023
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research in Particle Theory, Cosmology, and Quantum Gravity
粒子论、宇宙学和量子引力研究
  • 批准号:
    2310429
  • 财政年份:
    2023
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Continuing Grant
Study of heating and particle acceleration on collisionless shocks with ground experiment, theory, and high energy resolution X-ray observations
利用地面实验、理论和高能量分辨率 X 射线观测研究无碰撞冲击的加热和粒子加速
  • 批准号:
    23H01211
  • 财政年份:
    2023
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Particle Physics - Theory, Quantum Field Theory
粒子物理-理论、量子场论
  • 批准号:
    2855977
  • 财政年份:
    2023
  • 资助金额:
    $ 98.72万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了