AMPS: Scalable Methods for Real-time Estimation of Power Systems under Uncertainty

AMPS:不确定性下电力系统实时估计的可扩展方法

基本信息

  • 批准号:
    2229495
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

The United States power grid, which is arguably the most complex civil engineering system, is facing unprecedented challenges stemming from the advent of new sensing technologies, adoption of large amounts of renewable energy, and emergence of smart grids. Power system operators rely on estimating parameters for monitoring power systems in real-time, detecting risks, verifying technical compliance, and decision-making. However, this estimation problem is particularly challenging due to the large size and complexity of the power grid, as well as the need to perform such tasks in real-time. Decisions about the best and safe power grid operations depend critically on knowing the current parameters and states of the grid. This research will address these challenges by developing computational methods that are scalable, exploit problem structures, and are robust with respect to uncertainties in the power system models. In particular, the project will address identifying the most influential parameters in the power system models and developing mathematical tools to efficiently estimate power system model parameters from data with quantified uncertainties. The project will provide training opportunities for students from underrepresented groups in STEM.Bayesian inversion facilitates the integration of data with complex physics-based models, such as power systems, to quantify the uncertainties in model predictions. The algorithmic developments for Bayesian inversion in the context of power grid, face a number of fundamental challenges. Among those are high-dimensionality of the inversion parameters (stemming from the size of the power grid), expensive and real-time evaluations of the parameter-to-observable maps, and model uncertainty additional to the uncertainty in inversion parameters. The project will develop mathematically rigorous, computationally efficient, and robust methods that overcome mathematical and computational barriers in solving large-scale estimation problems governed by uncertain power system models. In particular, the investigators will build on the existing state-of-the-art for Bayesian inversion algorithms and extend these by using (i) sensitivity analysis to classify the uncertain parameters based on their importance, (ii) the Bayesian approximation error approach to incorporate additional uncertainty into the Bayesian inverse problem governed by power grid models, (iii) surrogate modeling for power systems (via machine learning and dimension reduction techniques) and (iv) second-order methods and approximations of second derivative information to reduce the computational cost when solving the Bayesian inverse problem. The algorithms, mathematical findings, and open-source codes will be disseminated through peer-reviewed journal papers and presentations at conferences and workshops.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国电网可以说是最复杂的土木工程系统,由于新传感技术的出现、大量可再生能源的采用以及智能电网的出现,它正面临着前所未有的挑战。电力系统运营商依靠估计参数来实时监控电力系统、检测风险、验证技术合规性和决策。然而,由于电网规模庞大且复杂,并且需要实时执行此类任务,因此该估计问题尤其具有挑战性。关于最佳和安全电网运行的决策关键取决于了解电网的当前参数和状态。这项研究将通过开发可扩展的计算方法来解决这些挑战,利用问题结构,并且对于电力系统模型的不确定性具有鲁棒性。特别是,该项目将致力于识别电力系统模型中最有影响力的参数,并开发数学工具,以根据具有量化不确定性的数据有效地估计电力系统模型参数。该项目将为 STEM 领域代表性不足群体的学生提供培训机会。贝叶斯反演有助于将数据与复杂的基于物理的模型(例如电力系统)集成,以量化模型预测中的不确定性。电网背景下贝叶斯反演的算法发展面临着许多基本挑战。其中包括反演参数的高维性(源于电网的规模)、参数到可观测图的昂贵且实时的评估,以及反演参数不确定性之外的模型不确定性。该项目将开发数学严谨、计算高效且稳健的方法,克服数学和计算障碍,解决由不确定电力系统模型控制的大规模估计问题。特别是,研究人员将建立在现有最先进的贝叶斯反演算法的基础上,并通过使用(i)敏感性分析根据不确定参数的重要性对不确定参数进行分类,(ii)贝叶斯近似误差方法来扩展这些算法将额外的不确定性纳入电网模型控制的贝叶斯逆问题中,(iii) 电力系统的代理建模(通过机器学习和降维技术)和 (iv) 二阶方法和二阶导数信息的近似,以降低计算成本解决贝叶斯逆问题时。算法、数学发现和开源代码将通过同行评审的期刊论文以及会议和研讨会上的演示进行传播。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Noemi Petra其他文献

Democratizing Uncertainty Quantification
不确定性量化民主化
  • DOI:
    10.48550/arxiv.2402.13768
  • 发表时间:
    2024-02-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Seelinger;A. Reinarz;Mikkel B. Lykkegaard;Amal Mohammed A. Alghamdi;David Aristoff;Wolfgang Bangerth;Jean B'en'ezech;Matteo Diez;Kurt Frey;J.D. Jakeman;Jakob S. Jørgensen;Ki;Massimiliano Martinelli;M. Parno;R. Pellegrini;Noemi Petra;N. A. B. Riis;Katherine Rosenfeld;A. Serani;L. Tamellini;Umberto Villa;T. J. Dodwell;Robert Scheichl
  • 通讯作者:
    Robert Scheichl

Noemi Petra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Noemi Petra', 18)}}的其他基金

2018 Gene Golub SIAM Summer School: Inverse Problems: Systematic Integration of Data with Models under Uncertainty
2018 Gene Golub SIAM 暑期学校:反问题:不确定性下数据与模型的系统集成
  • 批准号:
    1834756
  • 财政年份:
    2018
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
CAREER: Large-Scale Bayesian Inverse Problems Governed by Differential and Differential-Algebraic Equations
职业:微分方程和微分代数方程控制的大规模贝叶斯逆问题
  • 批准号:
    1654311
  • 财政年份:
    2017
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Collaborative Research: SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion
合作研究:SI2-SSI:不确定性下的数据与复杂预测模型的集成:大规模贝叶斯反演的可扩展软件框架
  • 批准号:
    1550547
  • 财政年份:
    2016
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant

相似国自然基金

具备可扩展性与隐私保障的数据驱动分布式优化方法及其在需求响应中的应用
  • 批准号:
    72301008
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于无监督持续学习的单细胞多组学数据可扩展整合方法研究
  • 批准号:
    62303488
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
可变扩散系数非局部问题的分布式可扩展的有限元并行计算方法
  • 批准号:
    12301496
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子马尔可夫模型上的符号验证方法及其扩展研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
三维血流问题的可扩展并行方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Innovating and Validating Scalable Monte Carlo Methods
创新和验证可扩展的蒙特卡罗方法
  • 批准号:
    DE240101190
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Discovery Early Career Researcher Award
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
  • 批准号:
    10725500
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
Implementing Scalable, PAtient-centered Team-based Care for Adults with Type 2 Diabetes and Health Disparities (iPATH)
为患有 2 型糖尿病和健康差异的成人实施可扩展、以患者为中心的团队护理 (iPATH)
  • 批准号:
    10660735
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
Real time risk prognostication via scalable hazard trees and forests
通过可扩展的危险树和森林进行实时风险预测
  • 批准号:
    10655749
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
In vivo Perturb-map: scalable genetic screens with single-cell and spatial resolution in intact tissues
体内扰动图:在完整组织中具有单细胞和空间分辨率的可扩展遗传筛选
  • 批准号:
    10578616
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了