Piecing together the Neutrino Mass Puzzle in Search of New Particles with Precision Oscillation Experiments and Quantum Technologies
通过精密振荡实验和量子技术拼凑中微子质量难题以寻找新粒子
基本信息
- 批准号:ST/W003880/2
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Neutrino physics has the potential to revolutionise our current understanding of the universe.The elusive neutrino is the most abundant massive particle in nature, but one of the most tricky to measure, because of its interaction properties. One hundred trillion neutrinos from the sun are passing through your body every second, but the chance of them actually stopping is incredibly small; if you lived to be one quadrillion years old, it's possible one may stop inside during your lifetime. Over the past five decades, neutrino experiments have overcome this challenge by developing new detector and particle beam technologies, however, in this relatively modern field, many properties and interactions of the neutrino remain shrouded in mystery. One puzzle is the ever-increasing number of hints that there may be more neutrinos than the three we have already discovered. Does a fourth "sterile" neutrino, exist? Could it be Dark Matter? My passion is to develop novel technology which allows me to make more precise measurements than ever before of neutrinos, to answer these questions. As a research fellow, I will use the first data from the Short Baseline Neutrino (SBN) programme: an innovative system of detectors that I spent the past seven years building, to investigate a phenomenon called neutrino oscillations. Measuring this process gives us an opportunity to probe the existence of new kinds of neutrino. Using these state-of-the-art neutrino detectors, called liquid argon Time Projection Chambers, I will measure neutrino interactions, and lead a search for sterile neutrinos with SBN.More clues can be found in a complementary search: measuring the mass of neutrinos. In the radioactive decay of tritium, an electron and a neutrino are emitted. Using what we know about the masses of the three known neutrinos, I will use energy conservation to look for evidence of a fourth.Directly measuring the neutrino mass is extremely challenging. Even though the neutrino is the most abundant massive particle in the universe, we can't precisely say what its mass is. My goal is to combine quantum measurement techniques with an emerging technology called Cyclotron Radiation Emission Spectroscopy, to create a detector which can measure the neutrino mass with unprecedented precision. Current detector technologies are unable to directly measure the absolute mass of the neutrino, but this project will lay groundwork for the ultimate future experiment: solving the neutrino mass puzzle by direct measurement.
中微子物理学有可能彻底改变我们对宇宙的当前理解。难以捉摸的中微子是自然界中最丰富的巨大粒子,但由于其相互作用的相互作用,但最棘手的粒子之一。来自太阳的一百万亿个中微子每秒都会通过您的身体,但实际上停止的机会非常小。如果您已经生活了一十四年,那么您一生中可能会停在里面。在过去的五十年中,中微子实验通过开发新的检测器和粒子束技术克服了这一挑战,但是,在这个相对现代的领域中,中微子的许多特性和相互作用仍然笼罩在神秘中。一个难题是越来越多的提示,即中微子可能比我们已经发现的三个中微子更多。是否存在第四个“无菌”中微子吗?可能是暗物质吗?我的热情是开发新颖的技术,这使我能够比中微子比以往任何时候都进行更精确的测量,以回答这些问题。作为一名研究人员,我将使用短基线中微子(SBN)计划中的第一个数据:我过去七年来构建的创新探测器系统来研究一种称为中微子振荡的现象。衡量此过程使我们有机会探究新型中微子的存在。使用这些最先进的中微子探测器,称为液体氩时间投影室,我将测量中微子相互作用,并在互补的搜索中找到与SBN的无菌中微子的搜索。 。在Tritium的放射性衰减中,发出电子和中微子。利用我们对三个已知中微子的质量的了解,我将使用节能来寻找第四个证据。直接测量中微子质量是极具挑战性的。即使中微子是宇宙中最丰富的巨大粒子,我们也不能准确地说出它的质量是什么。我的目标是将量子测量技术与称为回旋辐射发射光谱的新兴技术相结合,以创建一个可以以前所未有的精度测量中微子质量的检测器。当前的探测器技术无法直接测量中微子的绝对质量,但是该项目将为未来的最终实验奠定基础:通过直接测量来解决中微子质量难题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicola McConkey其他文献
Nicola McConkey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicola McConkey', 18)}}的其他基金
Piecing together the Neutrino Mass Puzzle in Search of New Particles with Precision Oscillation Experiments and Quantum Technologies
通过精密振荡实验和量子技术拼凑中微子质量难题以寻找新粒子
- 批准号:
ST/W003880/1 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Fellowship
相似国自然基金
让我们一起线上购物吧!探究影响消费者协同购物效果的因素及其作用机理
- 批准号:72372112
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Piecing together the Neutrino Mass Puzzle in Search of New Particles with Precision Oscillation Experiments and Quantum Technologies
通过精密振荡实验和量子技术拼凑中微子质量难题以寻找新粒子
- 批准号:
ST/W003880/1 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Fellowship
Precise Control of Color Center Formation in a Single Carbon Nanotube Using Microspectroscopy
使用显微光谱精确控制单个碳纳米管中色心的形成
- 批准号:
20K15112 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study of photoexcited carrier transfer between single semiconductor nanoparticle and adsorbed molecules
单个半导体纳米颗粒与吸附分子之间光激发载流子转移的研究
- 批准号:
20K15130 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Search for assembly intermediates of photosynthetic proteins by high-throughput single-molecule spectroscopy
通过高通量单分子光谱寻找光合蛋白的组装中间体
- 批准号:
19H03187 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Stronger together: Joint probes for the measurement of the neutrino mass using the Hyper Suprime-Cam survey
强强联手:使用 Hyper Suprime-Cam 巡天测量中微子质量的联合探测器
- 批准号:
17K14274 - 财政年份:2017
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Young Scientists (B)