NERC-NSFGEO SMARTWATER: Diagnosing controls of pollution hot spots and hot moments and their impact on catchment water quality
NERC-NSFGEO SMARTWATER:诊断污染热点和热点时刻的控制及其对流域水质的影响
基本信息
- 批准号:NE/X018830/1
- 负责人:
- 金额:$ 132.05万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Planetary boundaries of river water pollution are at risk of being breached, with dangerous consequences for human and environmental health, economic prosperity, and water security. The current paradigm for environmental management is predicated on understanding of average conditions. However, we know environmental pollution can vary markedly in space and time. This interdisciplinary Large Grant (co-created with non-academic partners and as NERC-NSF collaboration) will pioneer innovations in experimental analytics, data science and mathematical modelling to yield new mechanistic understandings of the dynamic drivers of multi-contaminant pollution hotspots (spaces) and hot moments (times) in a changing water world. The diagnosis of the impact of these locations and periods when average pollution conditions are far exceeded on large scale and long-term river basin water quality is critical to inform local and global adaptation and mitigation strategies for river pollution and develop interventions to keep within a safe(r) 'operating space' and improve water quality for people and the environment. SMARTWATER will therefore integrate environmental sensing, network and data science innovations, and mathematical modelling with stakeholders' catchment knowledge to transform the way we diagnose, understand, predict, and manage water pollution hotspots and hot moments.We will:1. Pioneer the application of scalable field diagnostic technologies for water quality sensing and sampling for identifying and characterising multi-pollution hotspots and hot moments for emerging (e.g., wastewater indicators, pharmaceuticals, pesticides) and legacy (e.g., nutrients) contaminants.2. Develop smart water quality monitoring network solutions at river basin scale based on integrating high-resolution networks of proxy water pollution indicators with multivariate UAV boat-based longitudinal river network sampling to understand the footprint, propagation and persistence of pollution hotspots and hot moments in river basins.3. Develop and apply data science innovations integrating deep machine learning and artificial intelligence approaches for pollution source attribution and to identify how hotspots and hot moments of multi-pollutions dynamics results from pollution source activation, connectivity and river network transport and transformation.4. Demonstrate the utility of the new generation of smart pollution data to improve the capacity of integrated river basin scale water quality models to adequately present and predict the emergence of pollution hotspots and hot moments including their large-scale footprint and longer-term relevance for catchment water pollution.5. Co-create with our stakeholder community pathways for successfully implementing practical and policy relevant changes in water quality management practice and use the interdisciplinary and inter-sectoral expertise of our broad stakeholder base to inform knowledge generation and dissemination pipelines in SMARTWATER.The mechanistic process understanding and integrated technological and management solutions that will be developed in SMARTWATER will allow a step change in the diagnostics, prediction and management of water pollution and transform our ability to understand and tackle pollution pressures of increasing complexity in a rapidly changing environment.
河水污染的行星边界有被破坏的风险,对人类和环境健康,经济繁荣和水安全造成了危险的后果。当前用于环境管理的范式取决于对平均条件的理解。但是,我们知道环境污染在时空和时间上可能有明显变化。这项跨学科的大笔赠款(与非学术伙伴共同创建,作为NERC-NSF协作)将在实验分析,数据科学和数学建模中开创创新,以产生对多抗激素污染热点热点(Space)和热点(及时的(及时)(及时的污水世界)的动态驱动因素的新机械理解。在大规模和长期河流盆地水质远远超过平均污染条件时,诊断这些位置和期间的影响对于为河流污染的本地和全球适应性和缓解策略提供了至关重要的,并制定了干预措施,以保持安全(R)“操作空间”并改善人们和环境的水质。因此,Smartwater将与利益相关者的集水学知识相结合,将环境感应,网络和数据科学创新以及数学建模进行整合,以改变我们诊断,理解,预测和管理水污染热点和热点时刻的方式。我们将:1。先驱者将可扩展的现场诊断技术应用于水质感测和采样,以识别和表征多污染热点以及用于新兴(例如废水指示剂,药品,农药)和遗产(例如,营养物质)污染物的热点(例如,废水指标,药物,农药)。基于将代理水污染指标与多元无人机基于无人机的纵向河流网络采样的高分辨率网络相结合,以了解河流流域量表的智能水质监测网络解决方案,以了解河流中污染热点和炎热时刻的占地面积,繁殖和持久性。3。开发和应用数据科学创新,整合了深度机器学习和人工智能方法,以确定污染源激活,连通性和河流网络运输和转换的热点和热点动态的热点和热点。4。展示新一代智能污染数据的实用性,以提高综合河流盆地量表水质模型的能力,以充分呈现和预测污染热点和热点的出现,包括它们的大规模足迹和与流域水污染的长期相关性5。与我们的利益相关者社区的途径共同创造,以成功地实施水质管理实践中的实用和政策相关的变化,并使用我们广泛的利益相关者基础的跨学科和部门专业知识,以在智能水上为知识的产生和传播管道提供信息,以了解机械过程的理解以及允许我们允许智能及诊断及其诊断的既定能力和管理的解决方案应对在迅速变化的环境中增加复杂性的污染压力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefan Krause其他文献
Influence of bank slope on sinuosity-driven hyporheic exchange flow and residence time distribution during a dynamic flood event
动态洪水过程中岸坡对蜿蜒驱动的潜流交换流和停留时间分布的影响
- DOI:
10.5194/hess-28-1751-2024 - 发表时间:
2024 - 期刊:
- 影响因子:6.3
- 作者:
Yiming Li;U. Schneidewind;Zhang Wen;Stefan Krause;Hui Liu - 通讯作者:
Hui Liu
The influence of system heterogeneity on peat-surface temperature dynamics
系统非均质性对泥炭表面温度动态的影响
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:6.7
- 作者:
R. Leonard;Paul A. Moore;Stefan Krause;K. Devito;R. Petrone;Carl A Mendoza;J. Waddington;N. Kettridge - 通讯作者:
N. Kettridge
TOWARDS EMBEDDED RADCOM-SENSORS IN WIND TURBINE BLADES: PRELIMINARY NUMERICAL AND EXPERIMENTAL STUDIES
风力涡轮机叶片中的嵌入式 RADCOM 传感器:初步数值和实验研究
- DOI:
10.2528/pierl19121004 - 发表时间:
2020 - 期刊:
- 影响因子:0.9
- 作者:
J. Simon;J. Moll;V. Krozer;Thomas Kurin;F. Lurz;R. Weigel;Stefan Krause;O. Bagemiel;A. Nuber;V. Issakov - 通讯作者:
V. Issakov
University of Birmingham Groundwater flooding:
伯明翰大学地下水泛滥:
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Julia Reiss;Daniel M. Perkins;Katarina E. Fussmann;Stefan Krause;C. Canhoto;P. Romeijn;Anne L. Robertson - 通讯作者:
Anne L. Robertson
Growth of an Fe buckled honeycomb lattice on Be(0001)
- DOI:
10.1016/j.susc.2024.122609 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Hermann Osterhage;Abid H. Khan;Karoline Oetker;Radek Dao;Samaneh Setayandeh;Roland Wiesendanger;Patrick Burr;Stefan Krause - 通讯作者:
Stefan Krause
Stefan Krause的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefan Krause', 18)}}的其他基金
Integrated Cross-Sectoral Solutions to Micro- and Nanoplastic Pollution in Soil and Groundwater Ecosystems
土壤和地下水生态系统中微塑料和纳米塑料污染的跨部门综合解决方案
- 批准号:
EP/X03626X/1 - 财政年份:2022
- 资助金额:
$ 132.05万 - 项目类别:
Research Grant
Reducing storm-induced contamination risks to water supply infrastructure by Active-Fibre-optic Distributed Temperature Sensing
通过有源光纤分布式温度传感降低风暴对供水基础设施造成的污染风险
- 批准号:
NE/R014752/1 - 财政年份:2018
- 资助金额:
$ 132.05万 - 项目类别:
Research Grant
Demonstrating the potential of real-time EO for hydrological situation monitoring and early warning in the sentinel era
展示实时EO在哨兵时代水文形势监测预警的潜力
- 批准号:
NE/N020502/1 - 财政年份:2016
- 资助金额:
$ 132.05万 - 项目类别:
Research Grant
DiHPS - A Distributed Heat Pulse Sensor Network for the quantification of subsurface heat and water fluxes
DiHPS - 用于量化地下热量和水通量的分布式热脉冲传感器网络
- 批准号:
NE/P003486/1 - 财政年份:2016
- 资助金额:
$ 132.05万 - 项目类别:
Research Grant
Large woody debris -A river restoration panacea for streambed nitrate attenuation?
大型木质碎片 - 河床硝酸盐衰减的河流恢复灵丹妙药?
- 批准号:
NE/L003872/1 - 财政年份:2014
- 资助金额:
$ 132.05万 - 项目类别:
Research Grant
Smart tracers and distributed sensor networks for quantifying the metabolic activity in streambed reactivity hotspots
智能示踪剂和分布式传感器网络,用于量化河床反应热点的代谢活动
- 批准号:
NE/I016120/2 - 财政年份:2012
- 资助金额:
$ 132.05万 - 项目类别:
Research Grant
Smart tracers and distributed sensor networks for quantifying the metabolic activity in streambed reactivity hotspots
智能示踪剂和分布式传感器网络,用于量化河床反应热点的代谢活动
- 批准号:
NE/I016120/1 - 财政年份:2011
- 资助金额:
$ 132.05万 - 项目类别:
Research Grant
相似海外基金
NERC-NSFGEO SMARTWATER: Diagnosing controls of pollution hot spots and hot moments and their impact on catchment water quality
NERC-NSFGEO SMARTWATER:诊断污染热点和热点时刻的控制及其对流域水质的影响
- 批准号:
NE/X018857/1 - 财政年份:2023
- 资助金额:
$ 132.05万 - 项目类别:
Research Grant
NERC-NSFGEO SMARTWATER: Diagnosing controls of pollution hot spots and hot moments and their impact on catchment water quality
NERC-NSFGEO SMARTWATER:诊断污染热点和热点时刻的控制及其对流域水质的影响
- 批准号:
2331932 - 财政年份:2023
- 资助金额:
$ 132.05万 - 项目类别:
Standard Grant
NERC-NSFGEO SMARTWATER: Diagnosing controls of pollution hot spots and hot moments and their impact on catchment water quality
NERC-NSFGEO SMARTWATER:诊断污染热点和热点时刻的控制及其对流域水质的影响
- 批准号:
NE/X018628/1 - 财政年份:2023
- 资助金额:
$ 132.05万 - 项目类别:
Research Grant
NERC-NSFGEO SMARTWATER: Diagnosing controls of pollution hot spots and hot moments and their impact on catchment water quality
NERC-NSFGEO SMARTWATER:诊断污染热点和热点时刻的控制及其对流域水质的影响
- 批准号:
NE/X018717/1 - 财政年份:2023
- 资助金额:
$ 132.05万 - 项目类别:
Research Grant
NERC-NSFGEO SMARTWATER: Diagnosing controls of pollution hot spots and hot moments and their impact on catchment water quality
NERC-NSFGEO SMARTWATER:诊断污染热点和热点时刻的控制及其对流域水质的影响
- 批准号:
NE/X01889X/1 - 财政年份:2023
- 资助金额:
$ 132.05万 - 项目类别:
Research Grant