Arctic Summer-time Cyclones: Dynamics and Sea-ice Interaction
北极夏季气旋:动力学和海冰相互作用
基本信息
- 批准号:NE/T006811/1
- 负责人:
- 金额:$ 43.72万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As climate has warmed in response to increasing greenhouse gases, the distribution of Arctic sea ice has changed dramatically, becoming thinner over large portions of the Arctic Ocean basin in summer with a prominent reduction of the September minimum in sea ice extent. Human activity is increasing within the Arctic as the environment changes, with more residents and visitors making use of the increased window for shipping, offshore operations and tourism during summer. This has driven demand for coupled forecasts of weather, ocean and sea-ice state across the Arctic on the timescales needed to make risk-based decisions. Weather forecast skill for the Arctic is lower than for northern mid-latitudes, but the reasons why are multi-faceted and not fully known. Our hypothesis is that some aspects of the Arctic environment are not well forecast because the surface conditions beneath Arctic weather systems are more dynamic due to the movement of sea ice. Understanding of the physical processes that couple the atmosphere, ocean and sea ice is incomplete and the new frontier in prediction is to model this coupled system with fidelity and skill. Centres striving to improve capability in this area are our project partners: the Met Office, ECMWF and Met Norway.Arctic cyclones are the dominant type of hazardous weather system affecting the Arctic environment in summer - thus a concern for all human activities. They can also have critical impacts on the Arctic environment: in particular on sea-ice movement, sometimes resulting in 'Very Rapid Ice Loss Events' (VRILEs - timescale days to weeks) which present a major challenge to coupled forecasts; and on the baroclinicity (temperature gradients) around the Arctic, influencing subsequent weather systems and forecasts of Arctic climate from weeks out to a season ahead.Our proposed observational experiment will be the first focusing on summer-time Arctic cyclones and taking the measurements required to investigate the influence of sea-ice conditions on their development. New observations are needed comprising of turbulent near-surface fluxes of momentum, heat and moisture measured simultaneously with the sea ice or ocean surface beneath the aircraft track and along cyclone-scale transects. These fluxes dictate the impact of the surface on the development of weather systems. We will operate from Svalbard (Norway) in summer 2021, using the British Antarctic Survey's Twin Otter low-flying aircraft equipped to measure turbulence at flight level and the surface properties through infrared and lidar remote sensing.Our US partners, have designed an observational experiment, called THINICE, looking downwards on Arctic cyclone structure from an aircraft flying above the tropopause (10 km). Our projects are co-designed for summer 2021 so that the observations from the Twin Otter will form a bridge between US airborne and satellite measurements above and the properties of the surface fluxes and sea ice beneath.The project brings together expertise in observations, modelling and theoretical approaches to surface exchange, cyclone dynamics and sea-ice physics. We will use novel theoretically-based approaches to interrogate forecast models as they run and determine the mechanisms through which the surface properties alter cyclone growth. The new surface and turbulence data will be used to improve the parametrization of form drag in models that is central to wind forcing of sea-ice motion as well as decelerating surface winds. These aspects will be explored with state-of-the-art atmosphere and sea-ice dynamics models. Finally, we will close the loop through investigation of the effects of increased surface roughness on Arctic cyclones and their coupled interaction with Arctic temperature gradients. A major legacy of the project will be the unprecedented observations that will enable much needed evaluation and development of environmental forecast models for decades to come.
随着温室气体增加导致气候变暖,北冰洋海冰的分布发生了巨大变化,夏季北冰洋盆地的大部分地区变得更薄,9月份海冰最小值显着减少。随着环境的变化,北极地区的人类活动不断增加,越来越多的居民和游客利用夏季增加的航运、海上作业和旅游窗口。这推动了对北极地区天气、海洋和海冰状态的联合预测的需求,以做出基于风险的决策所需的时间尺度。北极的天气预报技能低于北部中纬度地区,但其原因是多方面的且尚不完全清楚。我们的假设是,北极环境的某些方面没有得到很好的预测,因为北极天气系统下的表面条件由于海冰的移动而更加动态。对大气、海洋和海冰耦合物理过程的理解还不完整,预测的新领域是以保真度和技巧对这种耦合系统进行建模。致力于提高该领域能力的中心是我们的项目合作伙伴:英国气象局、ECMWF 和挪威气象局。北极气旋是影响夏季北极环境的主要危险天气系统类型,因此是所有人类活动的关注点。它们还可能对北极环境产生重大影响:特别是对海冰运动,有时会导致“非常快速的冰损事件”(VRILE - 时间尺度为数天到数周),这对耦合预测提出了重大挑战;以及北极周围的斜压(温度梯度),影响随后的天气系统和北极气候从几周到未来一个季节的预测。我们提出的观测实验将是第一个关注夏季北极气旋并采取所需测量的实验研究海冰条件对其发展的影响。需要新的观测,包括与飞机轨道下方和沿气旋规模横断面的海冰或海洋表面同时测量的动量、热量和湿度的近地表湍流通量。这些通量决定了地表对天气系统发展的影响。我们将于 2021 年夏季从斯瓦尔巴群岛(挪威)出发,使用英国南极调查局的双水獭低空飞行飞机,通过红外和激光雷达遥感测量飞行高度的湍流和表面特性。我们的美国合作伙伴设计了一项观测实验名为“THINICE”的飞机,从一架在对流层顶(10 公里)上空飞行的飞机上俯视北极气旋结构。我们的项目是为 2021 年夏季共同设计的,以便双水獭的观测结果将在美国机载和卫星测量上方以及下方表面通量和海冰的特性之间架起一座桥梁。该项目汇集了观测、建模和分析方面的专业知识。表面交换、气旋动力学和海冰物理学的理论方法。我们将使用新颖的基于理论的方法来询问预测模型的运行,并确定表面特性改变气旋生长的机制。新的表面和湍流数据将用于改进模型中形状阻力的参数化,这对于海冰运动的风力以及减速表面风至关重要。这些方面将通过最先进的大气和海冰动力学模型进行探索。最后,我们将通过研究表面粗糙度增加对北极气旋的影响及其与北极温度梯度的耦合相互作用来闭合循环。该项目的主要遗产将是前所未有的观测,这将使未来几十年急需的环境预测模型的评估和开发成为可能。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Airborne water vapor isotope measurements over the Iceland Sea in winter conditions
冬季条件下冰岛海上空水蒸气同位素测量
- DOI:http://dx.10.5194/egusphere-egu21-7357
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Touzeau A
- 通讯作者:Touzeau A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Lachlan-Cope其他文献
Thomas Lachlan-Cope的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Lachlan-Cope', 18)}}的其他基金
EUREC4A-UK: Elucidating the role of cloud-circulation coupling in climate
EUREC4A-UK:阐明云-环流耦合在气候中的作用
- 批准号:
NE/S015779/1 - 财政年份:2019
- 资助金额:
$ 43.72万 - 项目类别:
Research Grant
Aerosol-Cloud Coupling And Climate Interactions in the Arctic
北极的气溶胶-云耦合和气候相互作用
- 批准号:
NE/I028653/1 - 财政年份:2012
- 资助金额:
$ 43.72万 - 项目类别:
Research Grant
相似国自然基金
以血竭和夏天无为示范的活血化瘀中药功效关联物质发现及其作用机制研究
- 批准号:
- 批准年份:2020
- 资助金额:297 万元
- 项目类别:重点项目
基于RhoA信号通路探讨夏天无改善受损神经微环境治疗坐骨神经痛的研究
- 批准号:81873167
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
两种罂粟科植物镇痛活性成分的发现及作用机制研究
- 批准号:81872974
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
宁夏天然草原甲虫群落多样性及其对环境因子的响应
- 批准号:31660630
- 批准年份:2016
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Increasing Low-income Children's Access to Healthy Structured Programming to Reduce Obesity
增加低收入儿童获得健康结构化规划的机会以减少肥胖
- 批准号:
10654378 - 财政年份:2023
- 资助金额:
$ 43.72万 - 项目类别:
Transformative Iron Metal Nanoparticles with Controlled Oxidation for Magnetic Particle Imaging.
用于磁粒子成像的具有受控氧化的变革性铁金属纳米粒子。
- 批准号:
10730728 - 财政年份:2023
- 资助金额:
$ 43.72万 - 项目类别:
Environmental Health Research for Teachers and High School Students (EARTH) in the Great Northern Plains
北方大平原教师和高中生环境健康研究(EARTH)
- 批准号:
10594258 - 财政年份:2023
- 资助金额:
$ 43.72万 - 项目类别:
U-RISE at the University of the Virgin Islands
维尔京群岛大学 U-RISE
- 批准号:
10627066 - 财政年份:2023
- 资助金额:
$ 43.72万 - 项目类别:
Genomics Research Experience for Master's Students (GEMS) Fellowship
硕士生基因组学研究经验(GEMS)奖学金
- 批准号:
10628537 - 财政年份:2023
- 资助金额:
$ 43.72万 - 项目类别: