Impact of hydraulic fracturing in the overburden of shale resource plays: Process-based evaluation (SHAPE-UK)

水力压裂对页岩资源区覆盖层的影响:基于过程的评估 (SHAPE-UK)

基本信息

  • 批准号:
    NE/R018006/1
  • 负责人:
  • 金额:
    $ 57.94万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

In recent years, the UK has made significant progress in establishing renewable sources of energy. Solar, wind, biomass and hydro have seen a steady rise in use over the past decade, having gone from providing less than 5% of our electricity in 2004 to nearly 25% in 2016 (DBEIS, 'DUKES' - chapter 6, 2017). Nevertheless, natural gas will continue to be an important fuel in a transition to a carbon neutral supply of electricity. Furthermore, natural gas currently heats roughly 80% of our homes in the UK, and provides an important industrial feedstock. As North Sea gas reserves decline, the UK has in a decade gone from a position of self-sufficiency to importing over 50% of its natural gas. Therefore, for reasons of energy security, affordability and environmental impact, it is desirable to increase domestic gas supplies until we reach a point where carbon neutral energy sources are better established (e.g., nuclear). Shale gas and shale oil has transformed the World's energy market, contributing to the reduction of world oil prices and the USA becoming self-sufficient in both gas and oil. Furthermore, CO2 emissions in the USA are back to levels last seen in the early 1990s, because electricity generation has moved from coal- to gas-fired power stations. However, the move to shale gas has not been without controversy. Shale gas resources normally require hydraulic fracture stimulation - or fracking - in order to achieve production at economic rates. This technique is contentious due to public fears over a range of issues, including ground water contamination, induced seismicity, atmospheric emissions and ground subsidence. In November 2017 the UK will see its first shale gas stimulation in over 6 years, which will occur in the Vale of Pickering, North Yorkshire. The UK has a strict regulatory framework for shale gas exploitation, which requires close monitoring of any fluid leakage, fracture growth and induced seismicity associated with fracking. To achieve this requires a detailed understanding of local geology, and robust means of sensing fluid movement and stress changes before, during and after stimulation (e.g., geophysical monitoring). SHAPE-UK is a project that will establish a series of best practice recommendations for monitoring and mitigating fluid leakage into the overlying sediments and close to boreholes. To accomplish this, it is crucial that we understand the mechanical processes occurring in the subsurface, which are dependent on the composition of the rock, the chemistry of the fluids, and the structures they encounter (e.g., faults). Through a linked series of work packages that integrate geology, geophysics, geochemistry, petroleum engineering and geomechanics, we will be able to address fundamental scientific questions about the mechanisms for leakage, and how the leaking fluids might affect the sub-surface environment. A team of leading experts from a range of disciplines at 6 institutions has been assembled to address 'coupled processes from the reservoir to the surface' - Challenge 3 of the NERC call for proposals in the strategic programme area of Unconventional Hydrocarbons in the UK Energy System. We will exploit newly acquired data from the UK Geoenergy Observatory near Thornton in Cheshire. We are also very fortunate to have access to seismic, borehole and geologic data from a new shale gas development in North Yorkshire and a dataset from a mature shale gas resource in Western Canada. Our project partners include regulatory bodies who monitor ground water and seismicity during shale gas operations. The team has access to several comprehensive datasets and are thus in a very strong position to answer fundamental science questions associated with shale gas stimulation, which will provide a firm foundation for an effective regulatory policy. We expect this project to be a role model study for future developments in the UK and internationally.
近年来,英国在建立可再生能源方面取得了重大进展。太阳能、风能、生物质能和水力发电的使用量在过去十年中稳步增长,从 2004 年提供的电力不足 5% 增加到 2016 年的近 25%(DBEIS,“DUKES” - 第 6 章,2017 年) 。尽管如此,天然气仍将是向碳中和电力供应过渡的重要燃料。此外,目前英国约 80% 的家庭使用天然气供暖,并提供了重要的工业原料。随着北海天然气储量的下降,英国在十年内从自给自足转变为 50% 以上的天然气依赖进口。因此,出于能源安全、负担能力和环境影响的原因,我们希望增加国内天然气供应,直到更好地建立碳中和能源(例如核能)。页岩气和页岩油改变了世界能源市场,有助于降低世界石油价格,并使美国实现天然气和石油自给自足。此外,由于发电已从燃煤发电站转向燃气发电站,美国的二氧化碳排放量又回到了 20 世纪 90 年代初的水平。然而,转向页岩气并非没有争议。页岩气资源通常需要水力压裂增产或水力压裂才能以经济的速度实现生产。由于公众对地下水污染、诱发地震、大气排放和地面沉降等一系列问题的担忧,这项技术存在争议。 2017 年 11 月,英国将在北约克郡皮克林谷进行六年多以来的首次页岩气增产。英国对页岩气开采有严格的监管框架,要求密切监测与水力压裂相关的任何流体泄漏、裂缝扩展和诱发地震活动。为了实现这一目标,需要详细了解当地地质情况,以及在刺激之前、期间和之后感知流体运动和应力变化的可靠方法(例如地球物理监测)。 SHAPE-UK 项目将制定一系列最佳实践建议,用于监测和减轻流体泄漏到上覆沉积物和钻孔附近。为了实现这一目标,我们必须了解地下发生的机械过程,这些过程取决于岩石的成分、流体的化学性质以及它们遇到的结构(例如断层)。通过整合地质学、地球物理学、地球化学、石油工程和地质力学的一系列相互关联的工作包,我们将能够解决有关泄漏机制以及泄漏流体如何影响地下环境的基本科学问题。来自 6 个机构的多个学科的领先专家组成的团队已聚集在一起,以解决“从储层到地表的耦合过程”——NERC 挑战 3 征集英国能源系统非常规碳氢化合物战略计划领域的提案。我们将利用从柴郡桑顿附近的英国地能天文台新获得的数据。我们还非常幸运地能够获得北约克郡新页岩气开发项目的地震、钻孔和地质数据以及加拿大西部成熟页岩气资源的数据集。我们的项目合作伙伴包括在页岩气作业期间监测地下水和地震活动的监管机构。该团队可以访问多个综合数据集,因此在回答与页岩气增产相关的基础科学问题方面处于非常有利的地位,这将为有效的监管政策提供坚实的基础。我们希望该项目成为英国和国际未来发展的榜样研究。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coupled Poroelastic Modeling of Hydraulic Fracturing-Induced Seismicity: Implications for Understanding the Post Shut-In M L 2.9 Earthquake at the Preston New Road, UK
水力压裂诱发地震活动的耦合多孔弹性模型:对了解英国普雷斯顿新路关井后 M L 2.9 地震的启示
  • DOI:
    http://dx.10.1029/2021jb023376
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Cao W
  • 通讯作者:
    Cao W
A Shallow Earthquake Swarm Close to Hydrocarbon Activities: Discriminating between Natural and Induced Causes for the 2018-2019 Surrey, United Kingdom, Earthquake Sequence
靠近碳氢化合物活动的浅层地震群:区分 2018-2019 年英国萨里地震序列的自然原因和诱发原因
Large-Scale Fracture Systems Are Permeable Pathways for Fault Activation During Hydraulic Fracturing
大规模裂缝系统是水力压裂过程中断层激活的渗透通道
  • DOI:
    http://dx.10.1029/2020jb020311
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Igonin N
  • 通讯作者:
    Igonin N
Seismic Anisotropy Reveals Stress Changes around a Fault as It Is Activated by Hydraulic Fracturing
地震各向异性揭示了水力压裂激活断层周围的应力变化
  • DOI:
    http://dx.10.1785/0220210282
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Igonin N
  • 通讯作者:
    Igonin N
Good vibrations: living with the motions of our unsettled planet
良好的振动:与我们不稳定的星球的运动一起生活
  • DOI:
    http://dx.10.5194/gc-3-303-2020
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Badcoe T
  • 通讯作者:
    Badcoe T
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Verdon其他文献

James Verdon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Verdon', 18)}}的其他基金

DarkSeis: Seismic Imaging Of The Urban Subsurface Using Dark Fibre
DarkSeis:使用暗光纤对城市地下进行地震成像
  • 批准号:
    EP/Y020960/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.94万
  • 项目类别:
    Research Grant
Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
  • 批准号:
    NE/W009293/1
  • 财政年份:
    2022
  • 资助金额:
    $ 57.94万
  • 项目类别:
    Research Grant
An integrated assessment of UK Shale resource distribution based on fundamental analyses of shale mechanical & fluid properties.
基于页岩力学基础分析的英国页岩资源分布综合评估
  • 批准号:
    NE/R018162/1
  • 财政年份:
    2018
  • 资助金额:
    $ 57.94万
  • 项目类别:
    Research Grant
gAn integrated eophysical, geodetic, geomechanical and geochemical study of CO2 storage in subsurface reservoirs
g 地下储层二氧化碳封存的综合地球物理、大地测量、地质力学和地球化学研究
  • 批准号:
    NE/I021497/1
  • 财政年份:
    2011
  • 资助金额:
    $ 57.94万
  • 项目类别:
    Fellowship

相似国自然基金

融合自适应观测器的液压锚杆钻机全局滑模抗饱和控制方法
  • 批准号:
    62303464
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高压气动弹射的液压驱动系统性能刻画控制策略研究
  • 批准号:
    52305044
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于开式筒壳液压成形钢/铝层合板变形机理及界面演变行为
  • 批准号:
    52305402
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多支撑三维战机液压管路动力学建模、分析优化及实验
  • 批准号:
    12372015
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
大型整体构件低能耗多道次局部加载变形协调机制及其液压系统研究
  • 批准号:
    52375378
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Community Engagement Core
社区参与核心
  • 批准号:
    10393302
  • 财政年份:
    2022
  • 资助金额:
    $ 57.94万
  • 项目类别:
Community Engagement Core
社区参与核心
  • 批准号:
    10689693
  • 财政年份:
    2022
  • 资助金额:
    $ 57.94万
  • 项目类别:
The Association of Unconventional Natural Gas Development with Adolescent Internalizing Disorders
非常规天然气开发与青少年内化障碍的关联
  • 批准号:
    10350572
  • 财政年份:
    2020
  • 资助金额:
    $ 57.94万
  • 项目类别:
Mechanisms of Environmental-Mixture Induced Metabolic Disruption
环境混合物引起的代谢紊乱的机制
  • 批准号:
    10268263
  • 财政年份:
    2020
  • 资助金额:
    $ 57.94万
  • 项目类别:
Mechanisms of Environmental-Mixture Induced Metabolic Disruption
环境混合物引起的代谢紊乱的机制
  • 批准号:
    10454401
  • 财政年份:
    2020
  • 资助金额:
    $ 57.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了