High-resolution seismic constraints to reveal mid-mantle processes

高分辨率地震约束揭示中地幔过程

基本信息

  • 批准号:
    NE/R010862/1
  • 负责人:
  • 金额:
    $ 40.92万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

The dynamics of Earth's mantle, the 2900 km layer sandwiched between the crust and core, have shaped the Earth's surface, as we know it today. For example, upwelling material in the mantle, known as mantle plumes, causes localized, increased volcanism at the surface, forming most of today's ocean islands. The initiation and early formation of continents has also been attributed to mantle plumes, along with more recent continent-sized volcanic outflows known as 'large igneous provinces'. Processes in the deep mantle have also been hypothesized to control the pattern of plate tectonics, and the supercontinent cycle over the history of the Earth. We currently do not have a full picture of the dynamical history of the mantle that explains all these observations. For example, we do not know whether the mantle convects as one layer or two layers, and thus if mantle plumes directly connect processes at the core-mantle boundary to the surface, and if the mantle is well mixed over time. We also do not know the nature of heterogeneity in the deeper mantle, nor how this influences the overall dynamics. Much of our knowledge of the deep Earth's structure and dynamics comes from global seismic tomography, which uses earthquake waves to make an image of seismic velocity variations in the mantle. The images of seismic tomography show features with fast seismic wave speeds, interpreted as cold downgoing slabs, and features of slow seismic wave speeds, interpreted as hot upwelling mantle plumes. Resolution of these images has been ever improving with the burgeoning increase in data and computational power. One of the most remarkable recent discoveries has been the ponding of some slabs and mantle plumes around a depth of 1000 km in the mid-mantle. An unanswered question lies here: What is happening at this depth that affects the convective motion?The downside of seismic tomography is that it broadens imaged features and underestimates their true amplitudes. This is partly because the periods of the waves used are relatively long, thus reducing the resolution of the heterogeneity imaged at depth. Here we propose targeted studies using higher-frequency waves than can be incorporated in seismic tomography to image the small-scale heterogeneities around 1000 km in the mid-mantle. Specifically, we will use waves that are reflected or converted by these heterogeneities and therefore have strong sensitivity to the boundaries of these features. The unique sensitivities of the different phases allow us to map the size, shape, velocity contrast, density contrast and sharpness of the anomalous heterogeneities. In a preliminary study using converted seismic waves beneath Europe, we mapped broad patches of heterogeneity consistently at 1000 km depth. We will expand this technique to map these features on a global scale and understand how they relate to the observed slabs and mantle plumes and to what degree they are clustered around 1000 km. Next, we need to target the heterogeneities with a combination of different reflected and converted waves. The questions about the nature and role of these mantle heterogeneities are fundamentally interdisciplinary. We will combine these high-resolution seismological constraints with experiments and calculations of the thermo-elastic behaviour of specific compositions under high pressures and temperatures. In this manner we will test a number of key hypotheses on deep Earth structure: Do the heterogeneities originate from the surface and are they introduced by subducting slabs? Or do they represent primordial material, either brought up from the deeper mantle or stagnating at this depth throughout the history of the Earth? Are there different types of heterogeneities present?By understanding the composition of the observed heterogeneities through targeted deep Earth imaging, we can determine its role in controlling the overall mantle dynamics.
如今,我们所知道的,地球地幔的动力学是夹在地壳和核心之间的2900公里层。例如,地幔中的上升材料(称为地幔羽流)导致地表的局部火山增加,形成了当今大部分海洋岛屿。大陆的启动和早期形成也归因于地幔羽,以及较新的大陆大小的火山流出称为“大火成岩省”。还假设深幔的过程可以控制板块构造的模式,以及地球历史上的超大陆循环。目前,我们还没有对地幔的动态历史的全面了解,这解释了所有这些观察。例如,我们不知道地幔对流是否为一层或两层,因此是否将地幔羽直接连接到核心屏蔽边界的过程与表面连接在一起,以及地幔是否会随着时间的推移充分混合。我们也不知道更深的地幔中异质性的性质,也不知道这如何影响整体动态。我们对深层地球结构和动态的许多了解都来自全球地震层析成像,该层层造影使用地震波来形象地震中的地震速度变化。地震层析成像的图像显示了具有快速地震波速度的特征,被解释为冷的板,以及缓慢的地震波速度的特征,被解释为热上升的地幔羽流。随着数据和计算能力的增加,这些图像的分辨率一直在改善。最近发现的最引人注目的发现之一是在中间的1000公里深处堆积了一些板和地幔羽。一个未解决的问题在这里:在这个深度影响对流运动的深度发生了什么?地震层析成像的缺点是它扩大了成像的特征并低估了它们的真实幅度。这部分是因为所使用的波的周期相对较长,从而减少了深度成像的异质性的分辨率。在这里,我们提出了使用高频波的有针对性研究,而不是在地震断层扫描中纳入地震层析成像,以对中间的1000公里左右的小尺度异质性进行成像。具体而言,我们将使用这些异质性反映或转换的波,因此对这些特征的边界具有强烈的敏感性。不同阶段的独特敏感性使我们能够绘制大小,形状,速度对比度,密度对比度和异常异质性的清晰度。在使用欧洲下方转化的地震波的初步研究中,我们在1000公里的深度下始终绘制了宽阔的异质性斑块。我们将扩展此技术以在全球范围内绘制这些功能,并了解它们与观察到的板和地幔羽之间的关系,以及它们在1000公里左右的何种程度。接下来,我们需要以不同的反射和转换波的组合靶向异质性。这些地幔异质性的性质和作用的问题在根本上是跨学科的。我们将将这些高分辨率的地震学限制与在高压和温度下特定组成的热弹性行为的实验和计算结合在一起。通过这种方式,我们将对深层结构的许多关键假设进行测试:异质性是否来自表面,它们是否是通过俯冲板引入的?还是它们代表原始物质,要么是从更深的地幔中提出的,要么在整个地球的历史中都在这一深度停滞不前?是否存在不同类型的异质性?通过通过靶向深层成像来了解观察到的异质性的组成,我们可以确定其在控制整体地幔动力学中的作用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AFRP20: New P-Wavespeed Model for the African Mantle Reveals Two Whole-Mantle Plumes Below East Africa and Neoproterozoic Modification of the Tanzania Craton
AFRP20:非洲地幔的新纵波速度模型揭示了东非下方的两个完整地幔柱和坦桑尼亚克拉通的新元古代改造
  • DOI:
    10.17863/cam.64005
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boyce A
  • 通讯作者:
    Boyce A
Insights Into Deep Mantle Thermochemical Contributions to African Magmatism From Converted Seismic Phases
Variable modification of continental lithosphere during the Proterozoic Grenville orogeny: Evidence from teleseismic P-wave tomography
  • DOI:
    10.1016/j.epsl.2019.115763
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    A. Boyce;I. Bastow;E. Golos;S. Rondenay;S. Burdick;R. D. van der Hilst
  • 通讯作者:
    A. Boyce;I. Bastow;E. Golos;S. Rondenay;S. Burdick;R. D. van der Hilst
The Transition Zone Beneath West Argentina-Central Chile Using P-to-S Converted Waves
使用 P-to-S 转换波研究阿根廷西部至智利中部下方的过渡区
  • DOI:
    10.17863/cam.58466
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bonatto L
  • 通讯作者:
    Bonatto L
Constraints on the Mantle Wavespeed and Discontinuity Structure below the Turkana Depression, East Africa: Insights into Topographic Development and Ethiopian Flood Basalt Volcanism
东非图尔卡纳凹陷下方地幔波速和不连续结构的约束:地形发育和埃塞俄比亚溢流玄武岩火山作用的见解
  • DOI:
    10.1002/essoar.10508941.2
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boyce A
  • 通讯作者:
    Boyce A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanne Cottaar其他文献

Sanne Cottaar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanne Cottaar', 18)}}的其他基金

Feedbacks between mineral reactions and mantle convection
矿物反应与地幔对流之间的反馈
  • 批准号:
    NE/V018213/1
  • 财政年份:
    2022
  • 资助金额:
    $ 40.92万
  • 项目类别:
    Research Grant

相似国自然基金

基于地震约束CSAMT反演的陷落柱精细探测研究
  • 批准号:
    42304151
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大陆岩石圈流变模型的地震波品质因子和捕虏体流变性质约束研究
  • 批准号:
    42374109
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于震间−同震−震后形变的2022年门源地震复发周期约束研究
  • 批准号:
    42374006
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
走滑断裂模式约束的多方向交叉裂缝地震智能预测方法研究
  • 批准号:
    42304136
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
西澳大利亚克拉通前寒武纪地壳结构的多重地震约束
  • 批准号:
    42304063
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Controls on explosive basaltic eruptions within the San Francisco Volcanic Field: Constraints from seismic imaging and multiphase magma ascent modeling
对旧金山火山场内爆炸性玄武岩喷发的控制:地震成像和多相岩浆上升模型的限制
  • 批准号:
    2202666
  • 财政年份:
    2022
  • 资助金额:
    $ 40.92万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: Joint seismic-geodynamic constraints on deep Earth structure - Implications for mantle convection and Earth rotation
CSEDI合作研究:地球深层结构的联合地震-地球动力学约束——对地幔对流和地球自转的影响
  • 批准号:
    1903108
  • 财政年份:
    2019
  • 资助金额:
    $ 40.92万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Joint seismic-geodynamic constraints on deep Earth structure - Implications for mantle convection and Earth rotation
CSEDI合作研究:地球深层结构的联合地震-地球动力学约束——对地幔对流和地球自转的影响
  • 批准号:
    1902400
  • 财政年份:
    2019
  • 资助金额:
    $ 40.92万
  • 项目类别:
    Continuing Grant
Investigating the Lithosphere-Asthenosphere System by Integrating New Constraints on Seismic Attenuation with Existing Geophysical Observations
将地震衰减新约束与现有地球物理观测相结合研究岩石圈-软流圈系统
  • 批准号:
    1827277
  • 财政年份:
    2018
  • 资助金额:
    $ 40.92万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Understanding the origins of MORB geochemical heterogeneity using constraints from seismic tomography and geodynamic modeling
CSEDI 合作研究:利用地震层析成像和地球动力学建模的约束了解 MORB 地球化学非均质性的起源
  • 批准号:
    1800324
  • 财政年份:
    2018
  • 资助金额:
    $ 40.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了