Ocean2Ice: Processes and variability of ocean heat transport toward ice shelves in the Amundsen Sea Embayment

Ocean2Ice:阿蒙森海湾冰架海洋热传输的过程和变化

基本信息

  • 批准号:
    NE/J005746/1
  • 负责人:
  • 金额:
    $ 30.24万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Imagine that the ocean is like a large gin and tonic. When you add ice to the drink, the level in the glass goes up. When the lump of ice melts, the level in the glass doesn't change, because the ice is floating. When ice that is currently resting on land in Antarctica goes into the sea, either as an iceberg or as meltwater, the sea level all over the world goes up. It used to be thought that the same amount of water went back to the Antarctic as snowfall, to compensate for the icebergs and meltwater, so the whole system was in balance. But some glaciers in the Antarctic (and Greenland) seem to be melting at a faster rate than they are being replaced. So the total amount of ice is getting smaller, because more of that water is in the ocean, adding to sea level rise. This is worrying, because we don't really know why this is happening, and if we can't understand why, it's difficult to predict whether future sea level will carry on increasing at a faster and faster rate, or whether it will slow down or go back to equilibrium. Governments planning sea level defences in low-lying areas for the next decades need to have a more certain prediction of likely levels. That means that the big computer models that they use to forecast future climates need to have even better and more complex physics than they do already.So, what can scientists do to find out why the ice is melting? When the glaciers finally reach the sea, they float on the seawater, as an ice shelf. One suggestion is that the ocean is providing more heat to melt the ice than it used to do. Even though the ocean isn't that warm in the Antarctic, it is a few degrees above freezing, and if it washes underneath the ice shelves it can give up a lot of heat. What we plan to do in this project is to go to one of the fastest melting glaciers, the Pine Island Glacier in the Amundsen Sea, Antarctica. This is one of the most remote parts of our planet - imagine going to the Pacific Ocean and then heading south until you meet Antarctica. We will put some instruments in the water near the ice shelf, to see how and why the warm ocean water gets close to the ice. Is it the wind that forces the water there? Is it waves going round the Antarctic continent? Does the water get channelled up troughs in the sea floor gouged by glaciers thousands of years ago?We plan to use some novel equipment in the Antarctic, such as gluing tiny sensors onto elephant seals' fur. The seals will remain in the area over winter, long after we've gone back home. Their sensors will send back information about the seals' habitat - for example the temperature and the saltiness. This is useful for us because we can't get observations in the wintertime any other way because the area is covered in sea ice. And it's good for the seals because it will help our biologist colleagues to better understand how vulnerable the elephant seals might be to climate change. We'll also put in the water a mechanical version of a seal, called a Seaglider. This goes up and down in the water making measurements as it goes, and much like the seal sensors, it will communicate when it's at the surface using mobile phone. While we're there with the ship, we'll make lots of measurements of the temperature and saltiness of the water, how fast it's going, and how mixed up it is. Looking at all these data sets together should give us a better understanding of how the heat is getting to the glacier.One of the important tools will be a variety of computer models. These will range from all-singing, all-dancing climate models, that try to include ice, ocean and atmosphere all interacting, to much simpler models that test our understanding of the physics at play. The final result of the work we plan to do should be better climate models to predict future sea levels.
想象一下海洋就像一个大杜松子酒和滋补品。当您在饮料中添加冰时,玻璃杯中的水平会上升。当冰块融化时,玻璃中的水平不会改变,因为冰是漂浮的。当目前正在南极洲土地上的冰作为冰山或融水时,世界各地的海平面就在上升。过去,人们认为,与降雪相同的水又回到了南极,以补偿冰山和熔融水,因此整个系统都处于平衡状态。但是南极(和格陵兰)中的某些冰川似乎比更换的速度更快地融化。因此,冰的总量越来越小,因为更多的水在海中,增加了海平面的上升。这令人担忧,因为我们真的不知道为什么会发生这种情况,如果我们不了解原因,很难预测未来的海平面是否会以越来越快的速度增加,或者它是否会减慢或回到平衡。在接下来的几十年中,计划在低洼地区计划海平面防御的政府需要对可能水平进行更确定的预测。这意味着他们用来预测未来气候的大型计算机模型需要比已经更好,更复杂的物理学。当冰川最终到达大海时,它们以冰架漂浮在海水上。一个建议是,海洋提供的热量比以往更多的热量融化冰。即使在南极的海洋不那么温暖,它也比冰点高几个度,如果它在冰架下面洗涤,它会放弃很多热量。我们打算在这个项目中做的是去南极洲阿蒙森海的派恩岛冰川最快的冰川之一。这是我们星球上最偏远的地区之一 - 想象一下去太平洋,然后向南行驶,直到与南极洲见面。我们将在冰架附近的水中放一些乐器,以了解温暖的海水如何以及为什么靠近冰。是迫使那里的水吗?它是在南极大陆绕的波浪吗?几千年前,水被冰川盖好的海底槽被引导吗?我们计划在南极使用一些新型设备,例如将微小的传感器粘在大象密封的皮毛上。我们回到家很久之后,海豹将在冬天留在该地区。他们的传感器将寄回有关密封栖息地的信息 - 例如温度和咸味。这对我们很有用,因为我们无法在冬季获得任何其他方式观察,因为该地区被海冰覆盖。这对密封件是有益的,因为它将帮助我们的生物学家同事更好地了解大象海豹可能对气候变化有多脆弱。我们还将在水中放入一个机械版本的密封件,称为Seaglider。这是在水上进行测量中上下的,就像密封传感器一样,它会在使用手机在地面时进行通信。当我们在船上时,我们将对水的温度和盐度,速度进行的速度以及混合方式进行大量测量。查看所有这些数据集应该使我们可以更好地了解热量如何进入冰川。其中一种重要的工具将是各种计算机模型。这些范围从试图包括冰,海洋和氛围在内的全烟,全舞气候模型,都是互动的,到更简单的模型,这些模型测试了我们对物理学的理解。我们计划做的工作的最终结果应该是预测未来海平面的更好的气候模型。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Glacial Meltwater Identification in the Amundsen Sea
  • DOI:
    10.1175/jpo-d-16-0221.1
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Biddle, Louise C.;Heywood, Karen J.;Jenkins, Adrian
  • 通讯作者:
    Jenkins, Adrian
The Impact of the Amundsen Sea Freshwater Balance on Ocean Melting of the West Antarctic Ice Sheet
  • DOI:
    10.1029/2020jc016305
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Bett, David T.;Holland, Paul R.;Fleming, Andrew
  • 通讯作者:
    Fleming, Andrew
Variability in Basal Melting Beneath Pine Island Ice Shelf on Weekly to Monthly Timescales
  • DOI:
    10.1029/2018jc014464
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Davis, Peter E. D.;Jenkins, Adrian;Kim, Tae-Wan
  • 通讯作者:
    Kim, Tae-Wan
Variability of Circumpolar Deep Water transport onto the Amundsen Sea continental shelf through a shelf break trough
  • DOI:
    10.1002/2013jc008871
  • 发表时间:
    2013-12-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Assmann, K. M.;Jenkins, A.;Nicholls, K. W.
  • 通讯作者:
    Nicholls, K. W.
Sensitivity of Pine Island Glacier to observed ocean forcing
  • DOI:
    10.1002/2016gl070500
  • 发表时间:
    2016-10-28
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Christianson, Knut;Bushuk, Mitchell;Holland, David M.
  • 通讯作者:
    Holland, David M.
共 8 条
  • 1
  • 2
前往

Adrian Jenkins其他文献

Dynamics of gas near the Galactic Centre
银河系中心附近的气体动力学
Modeling the vertical structure of the ice shelf–ocean boundary current under supercooled condition with suspended frazil ice processes: A case study underneath the Amery Ice Shelf, East Antarctica
模拟冰架的垂直结构——过冷条件下的海洋边界流以及悬浮的碎冰过程:东南极洲阿默里冰架下方的案例研究
  • DOI:
    10.1016/j.ocemod.2020.101712
    10.1016/j.ocemod.2020.101712
  • 发表时间:
    2020-12
    2020-12
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Chen Cheng;Adrian Jenkins;Zhaomin Wang;Chengyan Liu
    Chen Cheng;Adrian Jenkins;Zhaomin Wang;Chengyan Liu
  • 通讯作者:
    Chengyan Liu
    Chengyan Liu
Polarization of radio waves transmitted through Antarctic ice shelves
通过南极冰架传输的无线电波的偏振
  • DOI:
    10.3189/172756402781817572
    10.3189/172756402781817572
  • 发表时间:
    2002
    2002
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    C. Doake;H. Corr;Adrian Jenkins
    C. Doake;H. Corr;Adrian Jenkins
  • 通讯作者:
    Adrian Jenkins
    Adrian Jenkins
Melt sensitivity of irreversible retreat of Pine Island Glacier
松岛冰川不可逆退缩的融化敏感性
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brad Reed;J. A. M. Green;Adrian Jenkins;G. H. Gudmundsson
    Brad Reed;J. A. M. Green;Adrian Jenkins;G. H. Gudmundsson
  • 通讯作者:
    G. H. Gudmundsson
    G. H. Gudmundsson
Open Research Online Oceanographic observations at the shelf break of the Amundsen Sea, Antarctica
南极洲阿蒙森海陆架断裂处的开放在线海洋学观测研究
  • DOI:
  • 发表时间:
    2022
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. P. Walker;Adrian Jenkins;K. Assmann;D. Shoosmith;M. Brandon
    D. P. Walker;Adrian Jenkins;K. Assmann;D. Shoosmith;M. Brandon
  • 通讯作者:
    M. Brandon
    M. Brandon
共 7 条
  • 1
  • 2
前往

Adrian Jenkins的其他基金

Coupled Evolution of Ice Shelf and Ocean in the Amundsen Sea Sector of Antarctica
南极阿蒙森海区冰架与海洋的耦合演化
  • 批准号:
    NE/Y001338/1
    NE/Y001338/1
  • 财政年份:
    2026
  • 资助金额:
    $ 30.24万
    $ 30.24万
  • 项目类别:
    Research Grant
    Research Grant
The influence of ocean circulation on local biogeochemistry and melting tidewater glaciers in northern Baffin Bay
海洋环流对巴芬湾北部当地生物地球化学和潮水冰川融化的影响
  • 批准号:
    NE/X008304/1
    NE/X008304/1
  • 财政年份:
    2022
  • 资助金额:
    $ 30.24万
    $ 30.24万
  • 项目类别:
    Research Grant
    Research Grant
Drivers of Oceanic Change in the Amundsen Sea (DeCAdeS)
阿蒙森海海洋变化的驱动因素 (DeCAdeS)
  • 批准号:
    NE/T012803/1
    NE/T012803/1
  • 财政年份:
    2020
  • 资助金额:
    $ 30.24万
    $ 30.24万
  • 项目类别:
    Research Grant
    Research Grant
Ocean Forcing of Ice Sheet Evolution in the Marine Basins of East Antarctica
东南极洲海洋盆地冰盖演化的海洋强迫
  • 批准号:
    NE/L007037/1
    NE/L007037/1
  • 财政年份:
    2020
  • 资助金额:
    $ 30.24万
    $ 30.24万
  • 项目类别:
    Research Grant
    Research Grant
Ocean circulation and melting beneath the ice shelves of the south-eastern Amundsen Sea
阿蒙森海东南部冰架下的海洋环流和融化
  • 批准号:
    NE/J005770/1
    NE/J005770/1
  • 财政年份:
    2013
  • 资助金额:
    $ 30.24万
    $ 30.24万
  • 项目类别:
    Research Grant
    Research Grant
Multi-scale modelling of the ocean beneath ice shelves
冰架下海洋的多尺度建模
  • 批准号:
    NE/G018146/1
    NE/G018146/1
  • 财政年份:
    2010
  • 资助金额:
    $ 30.24万
    $ 30.24万
  • 项目类别:
    Research Grant
    Research Grant
Ocean Circulation and Ice Shelf Melting on the Amundsen Sea Continental Shelf
阿蒙森海大陆架上的海洋环流和冰架融化
  • 批准号:
    NE/G001367/1
    NE/G001367/1
  • 财政年份:
    2008
  • 资助金额:
    $ 30.24万
    $ 30.24万
  • 项目类别:
    Research Grant
    Research Grant

相似国自然基金

锡(铋、铟)氧/硫化物在CO2电还原过程中的重构行为与催化机制研究
  • 批准号:
    52372217
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
有机添加物对旱区盐渍化农田水盐碳氮关键过程影响机制
  • 批准号:
    52309070
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
河口最大浑浊带对沉积物-水界面脱氮过程的影响机制
  • 批准号:
    42371104
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
大黄鱼冷藏过程特定腐败菌作用的肌苷酸关联物降解机制
  • 批准号:
    32302174
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
  • 批准号:
    2331729
    2331729
  • 财政年份:
    2024
  • 资助金额:
    $ 30.24万
    $ 30.24万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
  • 批准号:
    2331728
    2331728
  • 财政年份:
    2024
  • 资助金额:
    $ 30.24万
    $ 30.24万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Towards treatment for the complex patient: investigations of low-intensity focused ultrasound.
针对复杂患者的治疗:低强度聚焦超声的研究。
  • 批准号:
    10775216
    10775216
  • 财政年份:
    2023
  • 资助金额:
    $ 30.24万
    $ 30.24万
  • 项目类别:
Effects of Resonance-Frequency Breathing on Preclinical Alzheimer’s Disease Biomarkers and Cognition
共振频率呼吸对临床前阿尔茨海默病生物标志物和认知的影响
  • 批准号:
    10591329
    10591329
  • 财政年份:
    2023
  • 资助金额:
    $ 30.24万
    $ 30.24万
  • 项目类别:
Free-living and in-lab effects of sedentary time on cardiac autonomic nervous system function in youth with overweight/obesity
久坐时间对超重/肥胖青少年心脏自主神经系统功能的自由生活和实验室影响
  • 批准号:
    10598404
    10598404
  • 财政年份:
    2023
  • 资助金额:
    $ 30.24万
    $ 30.24万
  • 项目类别: