Individualising Radiotherapy Through Mechanistic Models
通过机制模型实现个体化放射治疗
基本信息
- 批准号:MR/Y019792/1
- 负责人:
- 金额:$ 75.1万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Radiotherapy treats cancer through the precise delivery of high doses of radiation to tumours, killing cancerous cells by damaging their DNA. Radiotherapy is highly effective because radiation can be accurately targeted to tumours while avoiding normal tissue, preventing the unwanted side effects which would result from killing healthy cells. The introduction of new advanced treatment techniques and better imaging to improve tumour targeting has significantly improved patient outcomes following radiotherapy. However, while radiotherapy benefits from a high degree of physical personalisation, more can be done to improve treatment outcomes. Cancer is a highly complex disease, associated with a large number of different types of genetic mutation. These mutations can significantly affect the radiation sensitivity of a given patient's cancer. Despite this, all patients with cancer in a particular organ are typically treated with the same dose and treatment schedule. While these doses have been tailored to cancer at a population level, this almost certainly under- and over-treats some patients. If individual radiosensitivity can be precisely defined before treatment, significant improvements in outcome could be achieved, in terms of improved tumour control or reduced side effects, depending on the patient's particular genetics. This fellowship seeks to address this challenge by developing models of how cells respond to radiation, which can accurately predict the sensitivity of an individual's disease based on the mutations present in their particular cancer. In work to date, we have developed models and characterised responses related to DNA repair, and shown that we can effectively predict and quantify quantify how DNA repair failure impacts on radiosensitivity. However, this work has also shown that although loss of DNA repair is important, it only explains a small fraction of the variability between the responses of different cancers and different patients. As a result, this approach needs to be expanded to better understand the range of responses seen in the clinic.In this renewal phase, we will work to better characterise these differences, measuring the impact that changes in other biological processes - such as those related to cell growth and cell death - have on radiation sensitivity, and integrate this into a combined model. We will demonstrate the efficacy of this model using new data generated locally, and then develop a method by which these predictions can be applied in clinical treatment plans, to enable its predictions to be tested in real patient data.If successful, this research programme will deliver a unique tool to enable the tailoring of radiotherapy using both physical and biological factors, offering more personalised therapy and better treatment outcomes for patients suffering from cancer in the future.
放射疗法通过向肿瘤精确输送高剂量辐射,通过破坏癌细胞的 DNA 来杀死癌细胞,从而治疗癌症。放射治疗非常有效,因为放射可以准确地瞄准肿瘤,同时避开正常组织,从而防止因杀死健康细胞而产生的不良副作用。引入新的先进治疗技术和更好的成像技术来改善肿瘤靶向,显着改善了放疗后的患者预后。然而,虽然放射治疗受益于高度的身体个性化,但可以采取更多措施来改善治疗效果。癌症是一种高度复杂的疾病,与大量不同类型的基因突变有关。这些突变可以显着影响特定患者癌症的放射敏感性。尽管如此,所有患有特定器官癌症的患者通常都接受相同的剂量和治疗方案。虽然这些剂量是针对人群水平的癌症量身定制的,但这几乎肯定会导致某些患者治疗不足或过度。如果可以在治疗前精确确定个体的放射敏感性,则可以根据患者的特定遗传学,在改善肿瘤控制或减少副作用方面实现结果的显着改善。该奖学金旨在通过开发细胞如何响应辐射的模型来应对这一挑战,该模型可以根据特定癌症中存在的突变准确预测个体疾病的敏感性。在迄今为止的工作中,我们已经开发了与 DNA 修复相关的模型和特征反应,并表明我们可以有效地预测和量化 DNA 修复失败如何影响放射敏感性。然而,这项工作还表明,尽管 DNA 修复的丧失很重要,但它只能解释不同癌症和不同患者反应之间差异的一小部分。因此,这种方法需要扩展,以更好地了解临床中看到的反应范围。在这个更新阶段,我们将努力更好地描述这些差异,测量其他生物过程变化的影响 - 例如那些相关的生物过程细胞生长和细胞死亡——对辐射敏感性的影响,并将其整合到一个组合模型中。我们将使用本地生成的新数据来证明该模型的功效,然后开发一种方法,将这些预测应用于临床治疗计划,使其预测能够在真实的患者数据中进行测试。如果成功,该研究计划将提供一种独特的工具,能够利用物理和生物因素来定制放射治疗,为未来的癌症患者提供更个性化的治疗和更好的治疗结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen McMahon其他文献
Screening for obstructive sleep apnea with novel hybrid acoustic smartphone app technology
利用新型混合声学智能手机应用程序技术筛查阻塞性睡眠呼吸暂停
- DOI:
10.21037/jtd-20-804 - 发表时间:
2020-08-01 - 期刊:
- 影响因子:2.5
- 作者:
Roxana Tiron;G. Lyon;H. Kilroy;Ahmed Osman;Nicola Kelly;Niall O’Mahony;Cesar Lopes;Sam Coffey;Stephen McMahon;M. Wren;Kieran Conway;N. Fox;J. Costello;R. Shouldice;Katharina Lederer;I. Fietze;T. Penzel - 通讯作者:
T. Penzel
Routine medical management of acute myocardial infarction. Lessons from overviews of recent randomized controlled trials.
急性心肌梗塞的常规医疗治疗。
- DOI:
10.1016/0002-9149(93)90789-f - 发表时间:
1990-09-01 - 期刊:
- 影响因子:37.8
- 作者:
Salim Yusuf;Peter Sleight;Peter Held;Stephen McMahon - 通讯作者:
Stephen McMahon
Tackling NCD in LMIC: Achievements and Lessons Learned From the NHLBI-UnitedHealth Global Health Centers of Excellence Program.
中低收入国家应对非传染性疾病:NHLBI-UnitedHealth 全球健康中心卓越计划的成就和经验教训。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:3.7
- 作者:
M. Engelgau;Uchechukwu Sampson;C. Rabadán;Richard Smith;J. Miranda;G. Bloomfield;D. Belis;K. V. Narayan;A. Rubinstein;Jiang He;D. Alam;D. Peters;Y. Wu;Lijing L. Yan;M. Merson;M. Ramírez;Benjamín Caballero;D. Xavier;S. Yusuf;D. Prabhakaran;S. Kimaiyo;Eric Velazquez;C. Denman;Elsa Cornejo;J. D. de Zapien;Cecilia Rosales;J. J. Miranda;Robert H. Gilman;N. Levitt;T. Gaziano;H. Ghannem;T. Laatikainen;Uchechukwu Sampson;N. Dianis;T. Wolbach;Gabriela Matta;L. Gutierrez;N. Elorriaga;R. Poggio;V. Irazola;L. Bazzano;A. Bhuiya;A. Wazed;Alfazal Khan;A. Siddiquee;A. Islam;Jahangir A. M. Khan;J. Uddin;K. Hasan;M. Khanam;M. Yunus;M. Chowdhury;N. Monalisa;N. Alam;P. Streatfield;Shyfuddin Ahmed;Sonia Parvin;Taslim Ali;L Niessen;M. Hossain;T. Koehlmoos;H. Standing;H. Lucas;S. Bleich;G. Anderson;Antonio J. Trujillo;A. Mirelman;Jesse Hao;Jing Zhang;M. Tian;Polly Huang;Rong Luo;Weigang Fang;Xian Li;Xiangxian Feng;Zhifang Li;Kelly Deal;E. Peterson;Elizabeth Delong;Bo Zhou;Jingpu Shi;Bruce Neal;Stephen Jan;Nicole Li;Stephen McMahon;Jianxin Zhang;Jixin Sun;P. Elliot;Yi Zhao;Yuhong Zhang;Chengyue Yao;Ning Sun;Qide Han;Ru;W. Niu;Yanfang Wang;Yang Ke;Yining Huang;Stephen Leeder;Alan Lopez;Rui;Yan Yu;A. V. Roman;C. Mendoza;D. Roche;Gabriela Mejicano;Maria A. Cordova;M. Kroker;Meredith P. Fort;P. Letona;Rebecca Kanter;Regina Garcia;S. Murillo;V. Chacon;R. Montero;E. J. López;Liz Peña;Maricruz Castro;A. L. Dengo;E. Ulate;Nadia Alvarado;Josefina Sibrian;Astarte Alegria;A. M. Gutiérrez;Flávia Fontes;A. Sigamani;D. Kamath;F. Xavier;K. Deepthi;M. Anupama;N. Mathu;Nisha George;Pranjali Rahul;P. Pais;P. Girish;Seena K. Thomas;T. Usha;T. Thomas;R. Joshi;N. Chidambaram;Rajeev Gupta;Clara K. Chow;J. Pogue;M. O’Donnell;P. Devereaux;D. Misquith;Twinkle Agrawal;F. Fathima;K. S. Reddy;R. Shivashankar;V. Ajay;Hassan M. Khan;M. Kadir;M. Masood;Z. Fatmi;A. Krishnan;Kavita Singh;N. Tandon;R. Khadgawat;V. Menon;B. Sethi;A. Unnikrishnan;M. Hutcheson;Mohammed K. Ali;S. Cunningham;Shivani A. Patel;Unjali P. Gujral;Ankush K Desai;D. Mohan;R. Pradeepa;V. Mohan;V. Viswanathan;R. Sahay;Seema Shah;G. Bantwal;P. Varthakavi;M. Nair;C. Akwanalo;D. Lagat;F. Barasa;M. Koech;Wilson Sugut;Belinda Korir;P. Mosol;Shamim M Ali;C. Sherman;Jane Carter;G. Bloomfield;Cynthia A Binanay;R. Vedanthan;A. Bernabé;F. León;George D. Smith;G. Málaga;H. García;J. Casas;K. Sacksteder;L. Smeeth;L. Huicho;M. Rivera;R. Gamboa;S. Ebrahim;V. Montori;R. Wise;W. Checkley;G. Diette;B. Nojilana;B. Majikela;Carmelita Sylvester;Johanna Malan;Katherine Murphy;K. Steyn;L. van Niekerk;Robert Mash;T. Puoane;Grace Kim;A. Pandya;S. Abrahams;H. Rhode;Michael K. Pather;Alvaro R. Andrade;B. García;Carlos Velasco;David Medina;D. Bravo;Diana Munguía;Eric W. Bateman;Francisco Castro;H. Schneider;Ilse Ibarra;J. Zulu;Joel Felix;Karla Tribe;K. Bobrow;L. Fairall;N. Folb;Norma Murillo;Norma Pacheco;P. Rodríguez;P. Navarro;Reyna Flores;R. van Zyl Smit;Rosario Meddoza;S. Surka;Serena Van Haght;Yanira Hernandez;L. Tsolekile;G. Jeridi;I. Harrabi;J. Maatoug;L. Boughammoura;Larbi Chaieb;N. Mrizek;R. Gaha;Khalifa Limam;Souad Amimi;Karima Gaha;H. Gamra;M. al’Absi;E. Vartiainen;Cornelius Moore;D. Spillan;Kristiane Cooper;Megan Mitchell;R. Kirby;Yunling Gao;E. Aluko - 通讯作者:
E. Aluko
Behaviour of DRG sensory neurites at the intact and injured adult rat dorsal root entry zone: Postnatal neurites become paralysed, whilst injury improves the growth of embryonic neurites
完整和受伤成年大鼠背根入口区 DRG 感觉神经突的行为:出生后神经突麻痹,而损伤促进胚胎神经突的生长
- DOI:
10.1002/(sici)1098-1136(199906)26:4<309::aid-glia5>3.0.co;2-0 - 发表时间:
1999-06-01 - 期刊:
- 影响因子:6.2
- 作者:
J. Golding;Charles Bird;Stephen McMahon;James Cohen - 通讯作者:
James Cohen
CRISPR antiphage defence mediated by the cyclic nucleotide-binding membrane protein Csx23
由环核苷酸结合膜蛋白 Csx23 介导的 CRISPR 抗噬菌体防御
- DOI:
10.1101/2023.11.24.568546 - 发表时间:
2023-11-24 - 期刊:
- 影响因子:14.9
- 作者:
S. Grüschow;S. McQuarrie;Katrin Ackermann;Stephen McMahon;B. Bode;T. Gloster;Malcolm F. White - 通讯作者:
Malcolm F. White
Stephen McMahon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen McMahon', 18)}}的其他基金
Individualising Radiotherapy Through Mechanistic Models
通过机制模型实现个体化放射治疗
- 批准号:
MR/T021721/1 - 财政年份:2020
- 资助金额:
$ 75.1万 - 项目类别:
Fellowship
Stratifying Chronic Pain Patients By Pathological Mechanism- A Multimodal Investigation Using Functional MRI, Psychometric And Clinical Assessment
按病理机制对慢性疼痛患者进行分层 - 使用功能 MRI、心理测量和临床评估的多模式研究
- 批准号:
MR/N026969/1 - 财政年份:2017
- 资助金额:
$ 75.1万 - 项目类别:
Research Grant
ERA-NET NEURON: Identification and study of different immune cell populations and their role in chronic pain
ERA-NET NEURON:不同免疫细胞群的识别和研究及其在慢性疼痛中的作用
- 批准号:
MR/M501785/1 - 财政年份:2015
- 资助金额:
$ 75.1万 - 项目类别:
Research Grant
Overexpression of neuronal calcium sensor-1 to promote axonal regeneration
神经元钙传感器1的过度表达促进轴突再生
- 批准号:
G0501617/1 - 财政年份:2006
- 资助金额:
$ 75.1万 - 项目类别:
Research Grant
相似国自然基金
血余蛋黄油通过PDGF-β/PDGFRβ募集周细胞抑制毛细血管扩张治疗慢性放射性直肠损伤便血的机制
- 批准号:82305342
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SETMAR通过组蛋白甲基化调控SMARCA2诱导甲状腺未分化癌分化改善放射性碘治疗抵抗的相关机制研究
- 批准号:82372753
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
放射治疗通过负调控脾脏成红细胞抑制肿瘤的分子机制研究
- 批准号:82073176
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
放射治疗通过TGF-β1通路调控免疫检查点介导的食管癌免疫耐受
- 批准号:81972850
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
FOXO4通过调控细胞衰老在放射性肺纤维化中的作用和机制研究
- 批准号:81903254
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding and Exploiting PSMA Expression in Prostate Cancer Through the Development of Aptamer Based-PSMA Targeting
通过开发基于适体的 PSMA 靶向来了解和利用前列腺癌中的 PSMA 表达
- 批准号:
486191 - 财政年份:2022
- 资助金额:
$ 75.1万 - 项目类别:
Studentship Programs
Prize - 202109PJT - Artificial Intelligence to Monitor Radiotherapy Efficacy and Complications through Imaging Technology (AI-REACT)
奖 - 202109PJT - 通过成像技术监测放射治疗效果和并发症的人工智能 (AI-REACT)
- 批准号:
460077 - 财政年份:2021
- 资助金额:
$ 75.1万 - 项目类别:
Operating Grants
Artificial Intelligence to Monitor Radiotherapy Efficacy and Complications through Imaging Technology (AI-REACT)
人工智能通过成像技术监测放疗疗效和并发症(AI-REACT)
- 批准号:
451657 - 财政年份:2021
- 资助金额:
$ 75.1万 - 项目类别:
Operating Grants
Enabling remote medical physics services for medical accelerator quality assurance through a novel, table-top imaging device
通过新颖的桌面成像设备实现远程医学物理服务,以保证医疗加速器的质量
- 批准号:
10256613 - 财政年份:2021
- 资助金额:
$ 75.1万 - 项目类别:
Enabling remote medical physics services for medical accelerator quality assurance through a novel, table-top imaging device
通过新颖的桌面成像设备实现远程医学物理服务,以保证医疗加速器的质量
- 批准号:
10773360 - 财政年份:2021
- 资助金额:
$ 75.1万 - 项目类别: