Enabling The Development And Application Of Artificial Intelligence In The NHS
推动人工智能在 NHS 中的开发和应用
基本信息
- 批准号:MR/Y011651/1
- 负责人:
- 金额:$ 75.68万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
THE PROMISE OF AI IN HEALTHCAREArtificial intelligence (AI) is a field of study which tries to get computers to behave in ways we would consider intelligent if those same behaviours were exhibited by humans - for example, the replication of human cognitive skills such as problem solving. But AI has huge potential beyond the mimicking of human behaviours - it is a fundamental technology that can allow meaningful processing of data beyond the comprehension of the human brain. The promise of AI for healthcare is thus clear - it could allow every diagnosis and treatment to be personalized on the basis of all known information about a patient, incorporating lessons from collective experience. By streamlining workflows, providing automated diagnosis of routine, non-serious conditions, and by allowing liberation from keyboards, AI could ultimately also provide healthcare professionals the "gift of time" - the dedicated time really required to provide the best possible care for patients.OBJECTIVEMuch of the recent progress in the application of AI to healthcare has come in the evaluation of eye disease. My fundamental vision for this fellowship will be to drive the development and application of AI-enabled healthcare, both in the NHS and globally, using ophthalmology as an exemplar for other medical specialties.TRAINING AND DEVELOPMENTRenewal of this fellowship will allow me to greatly enhance my standing as a leader in clinical AI, consolidating the leadership and technical skills I have developed to lead a multi-disciplinary research group, establish international networks, and drive innovation. CASE FOR SUPPORTFLF renewal will support a portfolio of interlinked research projects that cover the broad spectrum of clinical AI, going "from idea to algorithm" and "from code to clinic". A central focus of my team's early stage work will be on the scaling and validation of a foundation model ("RETFound'') that we have recently developed for ophthalmology. By going from 2 million to 20 million images in training, we will create a model which can be used in less common retinal diseases and which performs well across different demographic groups. My team will also use AI to learn more about the most common sight-threatening retinal diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy. We will develop systems that can predict disease progression, treatment burden, and visual outcomes, allowing better treatment and reducing sight loss. We will also continue to explore the emerging field of "oculomics" - using AI in an attempt to predict the future development of systemic diseases such as Alzheimer's, stroke, and heart attack. In parallel, my team will explore the clinical validation and translation of the most promising AI systems identified from our early stage exploratory work. This will involve evaluations of diagnostic accuracy and clinical safety, closely linked with requirements for regulatory approval and subsequent health services delivery. POTENTIAL APPLICATIONS AND BENEFITSRenewal of this fellowship will benefit the research community through the further development of AI systems in ophthalmology, making them open source or working with industry partners to explore commercialisation as appropriate. In tandem, renewal will allow development of new approaches to validation, both in-silico and in clinical studies. Through the creation of benchmark datasets, it will assist regulators to ensure the safety and effectiveness of AI systems before they are implemented in the real world. Most importantly, these systems will ultimately provide direct benefits for patients with better diagnosis, treatment, and monitoring of eye disease, as well as potential screening for systemic disease. Finally, the NHS will benefit by reducing pressures on already over-stretched hospital eye services, reducing the risk of patients losing vision unnecessarily.
人工智能在医疗保健领域的前景人工智能 (AI) 是一个研究领域,它试图让计算机以我们认为智能的方式行事,如果人类也表现出同样的行为,例如,复制人类认知技能,例如解决问题的能力。但人工智能除了模仿人类行为之外还具有巨大的潜力——它是一项基础技术,可以对超出人脑理解范围的数据进行有意义的处理。因此,人工智能在医疗保健方面的前景是明确的——它可以根据患者的所有已知信息,结合集体经验教训,实现每次诊断和治疗的个性化。通过简化工作流程,提供对常规、非严重疾病的自动诊断,并允许从键盘中解放出来,人工智能最终还可以为医疗保健专业人员提供“时间的礼物”——为患者提供最佳护理所需的专门时间。目标人工智能在医疗保健领域的应用最近取得的大部分进展都体现在眼部疾病的评估上。我对这项奖学金的基本愿景是,以眼科作为其他医学专业的典范,在 NHS 和全球范围内推动人工智能医疗保健的发展和应用。培训和发展这项奖学金的更新将使我能够大大提高我的能力作为临床人工智能领域的领导者,巩固我所培养的领导力和技术技能,以领导多学科研究小组、建立国际网络并推动创新。支持案例FLF 更新将支持一系列相互关联的研究项目,涵盖广泛的临床人工智能,“从想法到算法”和“从代码到临床”。我的团队早期阶段工作的中心重点是扩展和验证我们最近为眼科开发的基础模型(“RETFound”)。通过训练 200 万到 2000 万张图像,我们将创建一个该模型可用于不太常见的视网膜疾病,并且在不同人口群体中表现良好,我的团队还将使用人工智能来了解更多关于最常见的威胁视力的视网膜疾病,例如年龄相关性黄斑变性(AMD)和糖尿病。我们将开发能够预测疾病进展、治疗负担和视力结果的系统,从而实现更好的治疗并减少视力丧失。我们还将继续探索“眼科”这一新兴领域——利用人工智能来预测未来。与此同时,我的团队将探索从我们早期探索工作中确定的最有前途的人工智能系统的临床验证和转化。这将涉及诊断准确性和临床安全性的评估,与监管批准和随后的卫生服务提供的要求密切相关。潜在的应用和好处该奖学金的续签将通过进一步开发眼科人工智能系统、使其开源或与行业合作伙伴合作探索适当的商业化,使研究界受益。与此同时,更新将允许开发新的验证方法,包括计算机模拟和临床研究。通过创建基准数据集,它将协助监管机构确保人工智能系统在现实世界中实施之前的安全性和有效性。最重要的是,这些系统最终将为患者提供直接益处,提供更好的眼部疾病诊断、治疗和监测,以及潜在的全身性疾病筛查。最后,国民医疗服务体系(NHS)将通过减轻医院眼科服务已经过度紧张的压力而受益,从而降低患者不必要地丧失视力的风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pearse Keane其他文献
Pearse Keane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pearse Keane', 18)}}的其他基金
Enabling the Development and Application of Artificial Intelligence in the NHS
推动人工智能在 NHS 中的开发和应用
- 批准号:
MR/T019050/1 - 财政年份:2020
- 资助金额:
$ 75.68万 - 项目类别:
Fellowship
相似国自然基金
发展硒化氢的可控递送平台及其生物应用
- 批准号:22377007
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
血管化骨软骨器官芯片构建及其应用于骨关节炎发展机制研究
- 批准号:82302397
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
加速分子动力学方法的发展及其在负载金属颗粒生长机理的应用研究
- 批准号:22373055
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
约束性原子核-电子轨道理论的发展和应用
- 批准号:22303006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SIK1相分离促进p53转录活性调控三阴性乳腺癌发生发展的机理与应用研究
- 批准号:82302952
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigational New Drug (IND)-enabling and Early-Stage Development of Selective, Reversible, Orally Bioavailable ALDH2 inhibitor ANS-00858 to Treat Alcohol Use Disorder.
用于治疗酒精使用障碍的选择性、可逆、口服生物可利用的 ALDH2 抑制剂 ANS-00858 的研究性新药 (IND) 启用和早期开发。
- 批准号:
10748087 - 财政年份:2023
- 资助金额:
$ 75.68万 - 项目类别:
Preclinical and IND enabling studies for treatment of advanced lung cancer and other cancers metastatic to lung by pulmonary delivery of engineered Influenza A Virus (eIAV)
通过经肺递送工程甲型流感病毒 (eIAV) 治疗晚期肺癌和其他转移至肺部的癌症的临床前和 IND 研究
- 批准号:
10822598 - 财政年份:2023
- 资助金额:
$ 75.68万 - 项目类别:
IND-enabling development of a long-duration antagonist to treat opioid overdose
能够开发长效拮抗剂来治疗阿片类药物过量的 IND
- 批准号:
10786015 - 财政年份:2023
- 资助金额:
$ 75.68万 - 项目类别:
IND-enabling studies for Aspartylglucosaminuria (AGU) to support the initiation of an AAV9/AGA gene transfer clinical trial
天冬氨葡萄糖胺尿症 (AGU) 的 IND 启用研究,以支持 AAV9/AGA 基因转移临床试验的启动
- 批准号:
10722310 - 财政年份:2023
- 资助金额:
$ 75.68万 - 项目类别:
Development and Testing of MyPEEPS Mobile for Young Transgender Men
为年轻跨性别男性开发和测试 MyPEEPS Mobile
- 批准号:
10544319 - 财政年份:2022
- 资助金额:
$ 75.68万 - 项目类别: