Enabling the Development and Application of Artificial Intelligence in the NHS
推动人工智能在 NHS 中的开发和应用
基本信息
- 批准号:MR/T019050/1
- 负责人:
- 金额:$ 137.73万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
THE PROMISE OF AI IN HEALTHCAREArtificial intelligence (AI) is a field of study which tries to get computers to behave in ways we would consider intelligent if those same behaviours were exhibited by humans - for example, the replication of human cognitive skills such as problem solving. But AI has huge potential beyond the mimicking of human behaviours - it is a fundamental technology that can allow meaningful processing of data beyond the comprehension of the human brain. The promise of AI for healthcare is thus clear - it could allow every diagnosis and treatment to be personalized on the basis of all known information about a patient, incorporating lessons from collective experience. By streamlining workflows, providing automated diagnosis of routine, non-serious conditions, and by allowing liberation from keyboards, AI could ultimately provide healthcare professionals the "gift of time" - the dedicated time really required to provide the best possible care for patients.OBJECTIVEMuch of the exceptional recent progress in the application of AI to healthcare has come in the diagnosis of eye disease. This includes work that I initiated and led - the collaboration between Moorfields Eye Hospital and Google DeepMind to apply AI to retinal diseases such as age-related macular degeneration (AMD). My fundamental objective in this fellowship will be to drive the development and application of AI on the NHS using ophthalmology as a model. By emphasizing a central role for patients, and a thoughtful approach to use of their data, this fellowship will provide experience that can be shared with other medical specialties, helping the NHS become a world leader in AI. TRAINING AND DEVELOPMENTThis fellowship will allow me to become a world leader in the application of AI to healthcare, developing the leadership and technical skills to lead a diverse and multi-disciplinary research group, establish collaborations, and drive innovation.CASE FOR SUPPORTThe infrastructure component will focus on development of an ophthalmic bioresource that can be used to build AI systems and to evaluate their clinical performance. Using this, I will lead novel approaches to educating patients about how their data is used to develop AI systems. The research component will begin by investigating the feasibility in healthcare of "AI that can build AI" - recently developed platforms that can allow healthcare professionals without any computer programming experience to explore AI. It will next focus on developing novel AI systems that can provide more individualized treatment of retinal diseases like AMD, can enhance and transform ophthalmic images to allow better diagnosis, and which can generate "imitation" ophthalmic images indistinguishable from real versions. Finally, the research component will focus on links between the eye and the rest of the body, using AI in an attempt to predict the future development of diseases such as Alzheimer's, stroke, and heart attack.Finally, in years 5-7 of the fellowship, I plan to focus more on the practical implementation of AI systems in patient care pathways in the NHS and around the world. POTENTIAL APPLICATIONS AND BENEFITSThis fellowship will benefit the academic community and industry by greatly facilitating the development of AI systems for ophthalmology. Through the creation of benchmark datasets, it will assist regulators to ensure the safety and effectiveness of AI systems before they are implemented in the real world. Most importantly, these systems will ultimately provide direct benefits for patients with better diagnosis and treatment of eye disease. The NHS will also benefit by allowing hospital eye services to become both more efficient and less expensive. Finally, this fellowship will benefit the public and policy makers by developing and disseminating best practice regarding the use of patient data in AI, as well as allowing them to visualize and contextualize its use.
人工智能在医疗保健领域的前景人工智能 (AI) 是一个研究领域,它试图让计算机以我们认为智能的方式行事,如果人类也表现出同样的行为,例如,复制人类认知技能,例如解决问题的能力。但人工智能除了模仿人类行为之外还具有巨大的潜力——它是一项基础技术,可以对超出人脑理解范围的数据进行有意义的处理。因此,人工智能在医疗保健方面的前景是明确的——它可以根据患者的所有已知信息,结合集体经验教训,实现每次诊断和治疗的个性化。通过简化工作流程,提供对常规、非严重疾病的自动诊断,并允许从键盘中解放出来,人工智能最终可以为医疗保健专业人员提供“时间的礼物”——为患者提供最佳护理所需的专门时间。 目标人工智能在医疗保健领域的应用最近取得了巨大进展,其中之一就是眼科疾病的诊断。这包括我发起和领导的工作——莫菲尔德眼科医院和 Google DeepMind 之间的合作,将人工智能应用于年龄相关性黄斑变性 (AMD) 等视网膜疾病。我在这项奖学金中的基本目标是以眼科为模型,推动 NHS 中人工智能的开发和应用。通过强调患者的核心作用以及使用患者数据的深思熟虑的方法,该奖学金将提供可与其他医学专业分享的经验,帮助 NHS 成为人工智能领域的世界领导者。培训和发展这项奖学金将使我成为人工智能在医疗保健应用方面的世界领导者,培养领导力和技术技能,以领导多元化和多学科的研究小组,建立合作并推动创新。支持案例基础设施部分将专注于开发可用于构建人工智能系统并评估其临床表现的眼科生物资源。利用这一点,我将引导新的方法来教育患者如何使用他们的数据来开发人工智能系统。研究部分将首先调查“可以构建人工智能的人工智能”在医疗保健领域的可行性——最近开发的平台可以让没有任何计算机编程经验的医疗保健专业人员探索人工智能。接下来,该公司将专注于开发新型人工智能系统,该系统可以为 AMD 等视网膜疾病提供更个性化的治疗,可以增强和转换眼科图像以实现更好的诊断,并且可以生成与真实版本无法区分的“模仿”眼科图像。最后,研究部分将重点关注眼睛和身体其他部位之间的联系,利用人工智能试图预测阿尔茨海默氏症、中风和心脏病等疾病的未来发展。最后,在该计划的第 5-7 年作为奖学金,我计划更多地关注人工智能系统在 NHS 和世界各地患者护理路径中的实际实施。潜在的应用和好处该奖学金将极大地促进眼科人工智能系统的发展,从而使学术界和行业受益。通过创建基准数据集,它将协助监管机构确保人工智能系统在现实世界中实施之前的安全性和有效性。最重要的是,这些系统最终将为患者提供直接的好处,更好地诊断和治疗眼部疾病。 NHS 还将通过提高医院眼科服务的效率和成本而受益。最后,该奖学金将通过开发和传播有关在人工智能中使用患者数据的最佳实践,以及允许他们将其使用可视化和情境化,使公众和政策制定者受益。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Capabilities of GPT-4 in ophthalmology: an analysis of model entropy and progress towards human-level medical question answering.
GPT-4 在眼科领域的能力:模型熵分析和人类水平医学问答的进展。
- DOI:http://dx.10.1136/bjo-2023-324438
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Antaki F
- 通讯作者:Antaki F
Multimodal imaging of a vascularized idiopathic epiretinal membrane.
血管化特发性视网膜前膜的多模态成像。
- DOI:http://dx.10.1177/1120672120982523
- 发表时间:2020
- 期刊:
- 影响因子:1.7
- 作者:Anguita R
- 通讯作者:Anguita R
Stakeholder Perspectives on Clinical Decision Support Tools to Inform Clinical Artificial Intelligence Implementation: Protocol for a Framework Synthesis for Qualitative Evidence (Preprint)
利益相关者对临床决策支持工具的看法,以指导临床人工智能的实施:定性证据框架综合协议(预印本)
- DOI:http://dx.10.2196/preprints.33145
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Al
- 通讯作者:Al
Prospective validation of a virtual clinic pathway in the management of choroidal naevi: the NAEVUS study Report no. 1: safety assessment.
虚拟临床路径在脉络膜痣管理中的前瞻性验证:NAEVUS 研究报告
- DOI:http://dx.10.1136/bjophthalmol-2020-317371
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Al Harby L
- 通讯作者:Al Harby L
Stakeholder Perspectives on Clinical Decision Support Tools to Inform Clinical Artificial Intelligence Implementation: Protocol for a Framework Synthesis for Qualitative Evidence.
利益相关者对为临床人工智能实施提供信息的临床决策支持工具的看法:定性证据框架综合协议。
- DOI:http://dx.10.2196/33145
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Al
- 通讯作者:Al
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pearse Keane其他文献
Pearse Keane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pearse Keane', 18)}}的其他基金
Enabling The Development And Application Of Artificial Intelligence In The NHS
推动人工智能在 NHS 中的开发和应用
- 批准号:
MR/Y011651/1 - 财政年份:2024
- 资助金额:
$ 137.73万 - 项目类别:
Fellowship
相似国自然基金
发展硒化氢的可控递送平台及其生物应用
- 批准号:22377007
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
血管化骨软骨器官芯片构建及其应用于骨关节炎发展机制研究
- 批准号:82302397
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
加速分子动力学方法的发展及其在负载金属颗粒生长机理的应用研究
- 批准号:22373055
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
约束性原子核-电子轨道理论的发展和应用
- 批准号:22303006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SIK1相分离促进p53转录活性调控三阴性乳腺癌发生发展的机理与应用研究
- 批准号:82302952
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Enabling The Development And Application Of Artificial Intelligence In The NHS
推动人工智能在 NHS 中的开发和应用
- 批准号:
MR/Y011651/1 - 财政年份:2024
- 资助金额:
$ 137.73万 - 项目类别:
Fellowship
Investigational New Drug (IND)-enabling and Early-Stage Development of Selective, Reversible, Orally Bioavailable ALDH2 inhibitor ANS-00858 to Treat Alcohol Use Disorder.
用于治疗酒精使用障碍的选择性、可逆、口服生物可利用的 ALDH2 抑制剂 ANS-00858 的研究性新药 (IND) 启用和早期开发。
- 批准号:
10748087 - 财政年份:2023
- 资助金额:
$ 137.73万 - 项目类别:
Preclinical and IND enabling studies for treatment of advanced lung cancer and other cancers metastatic to lung by pulmonary delivery of engineered Influenza A Virus (eIAV)
通过经肺递送工程甲型流感病毒 (eIAV) 治疗晚期肺癌和其他转移至肺部的癌症的临床前和 IND 研究
- 批准号:
10822598 - 财政年份:2023
- 资助金额:
$ 137.73万 - 项目类别:
IND-enabling studies for Aspartylglucosaminuria (AGU) to support the initiation of an AAV9/AGA gene transfer clinical trial
天冬氨葡萄糖胺尿症 (AGU) 的 IND 启用研究,以支持 AAV9/AGA 基因转移临床试验的启动
- 批准号:
10722310 - 财政年份:2023
- 资助金额:
$ 137.73万 - 项目类别:
IND-enabling development of a long-duration antagonist to treat opioid overdose
能够开发长效拮抗剂来治疗阿片类药物过量的 IND
- 批准号:
10786015 - 财政年份:2023
- 资助金额:
$ 137.73万 - 项目类别: