Production of a Human Growth Plate Organ-Chip Model of Skeletal Development
人体骨骼发育生长板器官芯片模型的制作
基本信息
- 批准号:NC/X001873/1
- 负责人:
- 金额:$ 25.64万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The growth plate is an area of tissue at the ends of bones in children which determines the development of the skeleton. It represents a transition between bone and cartilage and is supported by blood vessels. Due to the importance of the growth plate, there is considerable interest in studying this organ and its role in development, ageing, and disease. To do so necessitates robust, reproducible and physiologically relevant experimental 'model' systems. Currently many studies rely on animals, typically mice and rats. Since mechanical forces are known to influence skeletal development in the body, some of the animal models include techniques to control mechanical forces on the growth plate whilst the animal is still alive. These widely used animal models often have limited reproducibility and fail to represent key behaviour in humans as well as prompting ethical concerns. There is therefore an urgent need to replace some of these animal models with non-animal, human experimental models. This would improve scientific rigour and relevance to human physiology as well as reducing the use of animals in science. Previously reported non-animal models of the growth plate fail to replicate the key features of the organ including a gradient of bone-cartilage tissue, mechanical loading and incorporation of blood vessels linking to the bone. Therefore, we will develop and validate a new human growth plate model using organ-on-a-chip technology. An organ-chip is an experimental model system in which human cells can be grown within interconnected channels through which fluid can be pumped providing the cells with the necessary nutrients to keep them alive. We will develop a growth plate organ-chip with the following key features: - A composite tissue graded from bone to cartilage - A channel replicating the blood vessels - Mechanical loading of the developing bone-cartilage growth plate- A reproducible, scalable system that can easily be adopted by other researchers To achieve the above, we will use human adult stem cells expanded from bone marrow. These stem cells will be grown within a 3D gel material in one of the channels in an organ-chip. The cells will then be differentiated into bone and cartilage cells using natural growth factors to create the graded bone-cartilage growth plate tissue. We will also create a blood vessel channel lined with human endothelial cells that form blood vessel walls. This blood vessel channel will provide a conduit for nutrient and hormone delivery to the developing growth plate as occurs in the body. To ensure reproducibility and scalability, the organ-chip model will be created with commercially available human stem cell and endothelial cells and within the commercially available organ-chip provided by Emulate Inc. This chip consists of two channels separated by a semi-permeable membrane allowing interaction between the developing bone-cartilage growth plate tissue in one channel and the blood vessel channel. In addition, we will utilise the ability of the Emulate organ-chip to provide controlled mechanical loading to the channels replicating the mechanical environment within the body. In this way, our vision is to create a highly reproducible and validated human vascularised growth plate organ-chip model which can be readily adopted by the scientific community reducing reliance on animal models and improving the quality of research into skeletal development in health and disease.
生长板是儿童骨骼末端的组织区域,这决定了骨骼的发展。它代表骨骼和软骨之间的过渡,并由血管支撑。由于生长板的重要性,研究器官及其在发育,衰老和疾病中的作用引起了很大的兴趣。这样做需要强大的,可重复的和生理上相关的实验“模型”系统。目前,许多研究依靠动物,通常是小鼠和大鼠。由于已知机械力会影响人体的骨骼发育,因此某些动物模型包括控制生长板上的机械力的技术,而动物仍然活着。这些广泛使用的动物模型通常具有有限的可重复性,并且无法代表人类的关键行为以及引起道德问题。因此,迫切需要用非动物的人类实验模型替代这些动物模型中的一些。这将改善科学严格和与人类生理学的相关性,并减少动物在科学中的使用。先前报道的生长板的非动物模型无法复制器官的关键特征,包括骨 - 骨折组织的梯度,机械负荷以及与骨骼相关的血管的掺入。因此,我们将使用Organ-A-A-Chip技术开发并验证新的人类生长板模型。器官芯片是一个实验模型系统,可以在该模型中生长人类细胞在相互联系的通道中生长,可以通过该模型泵送流体,从而为细胞提供必要的养分,以使其保持生存。我们将开发一个生长板器官芯片,具有以下关键特征: - 一种从骨骼到软骨分级的复合组织 - 复制血管的通道 - 正在发展的骨 - 骨折生长板的机械负载 - 一种可再现的可伸缩系统,可以轻松地由其他研究人员采用以上,以实现上述,我们将使用人类的成人干细胞从骨髓中扩展。这些干细胞将在器官芯片中的一个通道中的3D凝胶材料中生长。然后,使用自然生长因子将细胞分化为骨和软骨细胞,以创建分级的骨骼生长板组织。我们还将创建一个衬有人体内皮细胞的血管通道,形成血管壁。该血管通道将为体内发生的养分和激素递送到发育中的生长板提供管道。为了确保可重复性和可伸缩性,将使用市售的人类干细胞和内皮细胞以及在由仿真Inc提供的市售的器官芯片中创建器官芯片模型。该芯片由两个半渗透膜组成,该通道由一个可渗透的膜相互作用,可在一个通道和血液容器中允许发育中的骨骼生长板组织之间的相互作用。此外,我们将利用模拟器芯片的能力为复制人体机械环境的通道提供控制的机械载荷。这样,我们的愿景就是创建一个高度可再现和有效的人血管化生长板器官芯片模型,科学界很容易地采用降低对动物模型的依赖并提高健康和疾病骨骼发展的研究质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Knight其他文献
Martin Knight的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Knight', 18)}}的其他基金
Micro-manufacturing of tissue patterned organ-chips for accelerated deployment of new medicines (Patterned OrganChips)
用于加速新药部署的组织图案化器官芯片的微制造(图案化器官芯片)
- 批准号:
EP/Z531261/1 - 财政年份:2024
- 资助金额:
$ 25.64万 - 项目类别:
Research Grant
SurfEx: Epithelial Exchange Surfaces - From organizing principles to novel culture models of the gatekeepers of the body
SurfEx:上皮交换表面 - 从组织原理到身体守门人的新颖文化模型
- 批准号:
EP/Y031458/1 - 财政年份:2023
- 资助金额:
$ 25.64万 - 项目类别:
Research Grant
Osteoarthrtis may be treated as an environmental ciliopathy
骨关节炎可以作为环境纤毛病来治疗
- 批准号:
MR/L002876/1 - 财政年份:2014
- 资助金额:
$ 25.64万 - 项目类别:
Research Grant
相似国自然基金
新型小分子蛋白—人肝细胞生长因子三环域(hHGFK1)抑制破骨细胞及治疗小鼠骨质疏松的疗效评估与机制研究
- 批准号:82370885
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
利用全基因组CRISPRi/a筛选系统性鉴定lncRNA对人类神经元分化、存活及神经突生长的影响
- 批准号:82171416
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用全基因组CRISPRi/a筛选系统性鉴定lncRNA对人类神经元分化、存活及神经突生长的影响
- 批准号:32100766
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
环状RNA circ_101000诱导USP7蛋白乙酰化的分子机制及其在促进HCC细胞生长中的作用
- 批准号:31900449
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
HIV Tat蛋白激活YAP1信号途径参与调控卡波氏肉瘤代谢转变
- 批准号:81872218
- 批准年份:2018
- 资助金额:54.0 万元
- 项目类别:面上项目
相似海外基金
Anti-Complement Immunotherapy for Pancreatic Cancer
胰腺癌的抗补体免疫治疗
- 批准号:
10751872 - 财政年份:2024
- 资助金额:
$ 25.64万 - 项目类别:
Developing a robust native extracellular matrix to improve islet function with attenuated immunogenicity for transplantation
开发强大的天然细胞外基质,以改善胰岛功能,并减弱移植的免疫原性
- 批准号:
10596047 - 财政年份:2023
- 资助金额:
$ 25.64万 - 项目类别:
Engineering T cells to overcome inhibitory receptor signals that limit the efficacy of adoptive cell therapy against ovarian cancer
改造 T 细胞以克服抑制性受体信号,这些信号限制了过继性细胞疗法对卵巢癌的疗效
- 批准号:
10526155 - 财政年份:2023
- 资助金额:
$ 25.64万 - 项目类别:
Fatty Acid Metabolic Regulation of Anti-Tumor Immunity Against Irradiated Glioblastoma
脂肪酸代谢调节抗辐射胶质母细胞瘤的免疫
- 批准号:
10638744 - 财政年份:2023
- 资助金额:
$ 25.64万 - 项目类别:
Integrated Molecular and Cellular Drivers of Alveologenesis
肺泡发生的综合分子和细胞驱动因素
- 批准号:
10637764 - 财政年份:2023
- 资助金额:
$ 25.64万 - 项目类别: