Integrated Molecular and Cellular Drivers of Alveologenesis
肺泡发生的综合分子和细胞驱动因素
基本信息
- 批准号:10637764
- 负责人:
- 金额:$ 72.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-20 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAgonistAlveolarAlveolusArchitectureBlood capillariesBronchopulmonary DysplasiaCapillary Endothelial CellCell Differentiation processCell NucleusCell ProliferationCellsChromatinCollagenDataDevelopmentDistalEndothelial CellsEndotoxinsEpithelial CellsEpitheliumExtracellular MatrixExtracellular Matrix ProteinsFluorescent in Situ HybridizationFour-dimensionalGenerationsGenetic TranscriptionGoalsGrowthHealthHumanHyperoxiaImageImmunofluorescence ImmunologicImpairmentInflammationInjuryKnowledgeLamininLibrariesLightLungMesenchymalMicroscopyModelingMolecularMolecular TargetMyofibroblastPathway interactionsPatternPhenotypePregnancyPremature BirthPremature InfantProcessProductionProliferatingPublishingRegulationReporterResolutionRoleSamplingSignal PathwaySignal TransductionSliceStructureTestingTherapeuticTimeTransgenic OrganismsVisualizationWNT Signaling Pathwayalveolar epitheliumantagonistcapillary bedcell motilitydelivery complicationsexperimental studyextracellularhigh riskin vivoinhibitorinnovationlung developmentlung injurymultiple omicsneonatal exposureneonatal injuryneonatal lung injuryneonatal miceneonatenew growthnovel strategiesoverexpressionpostnatalpulmonary functionreal-time imagesrecruitresponserestorationscaffoldsecond harmonicspatial relationshipspatiotemporaltemporal measurementtranscriptome sequencingtranscriptomics
项目摘要
PROJECT SUMMARY
Neonates born during the saccular stage of lung development (23-32 wks gestation) are at highest risk for
bronchopulmonary dysplasia (BPD), a leading preterm birth complication. The mechanisms underlying this
vulnerability are poorly defined, a knowledge gap we consider foundational to the lack of curative BPD
therapies. To understand the irreversibility of arrested alveologenesis in BPD, we require a refined,
mechanistic understanding of the normal saccular to alveolar transition. Our preliminary data from 4-
dimensional live imaging and single-cell transcriptomics support a new model of alveologenesis in which
myofibroblast ring structures support the extrusion of AT2s (alveolar type 2 cells) followed by their
differentiation into AT1s (alveolar type 1 cells). According to our model, mature AT1s produce ECM proteins
and other factors that recruit specialized endothelial cells to become the alveolar capillary bed. Sequential,
spatiotemporally restricted signaling pathways, including Wnt and BMP, coordinate cell movement,
proliferation, and architecture. We have developed a neonatal injury model with a phenotype of impaired
alveologenesis that is relevant to human BPD by exposing neonatal mice to hyperoxia and inflammation during
the saccular stage. Our preliminary data from this model associate overexpression of Wnt5A/Wnt11 with
impaired alveologenesis. Post-injury deficits include decreased BMP production and activity in alveolar
epithelial cells and impaired AT2 to AT1 cell differentiation and decreased expression of extracellular matrix
(ECM) components by AT1 cells. Based on preliminary and published data, we hypothesize that
alveologenesis involves formation of a ring of myofibroblasts that express Wnt5a and Wnt 11 to drive AT2
proliferation and promote extrusion through the ring. Subsequent epithelial BMP production down-regulates
Wnt, promoting AT2 to AT1 differentiation and generation of an extracellular scaffold for capillary assembly.
Injury dysregulates Wnt and Bmp signaling, perturbing the precise spatiotemporal patterning during this critical
timeframe and resulting in arrested alveologenesis and long-term functional deficits. We will test this
hypothesis in the following specific aims: 1) Define the role of myofibroblast Wnt expression in regulating
AT2 proliferation and alveolar development; 2) Characterize mechanisms by which BMP signaling
regulates AT2-to-AT1 cell differentiation; 3) Determine the mechanisms whereby nascent AT1 cells
generate a scaffold for the developing alveolus. Successful completion of this proposal is anticipated to
transform our understanding of alveologenesis, identifying new molecular targets to promote post-injury
alveolar restoration and the optimal time windows for deployment of such newly directed therapies.
项目概要
肺发育囊状阶段(妊娠 23-32 周)出生的新生儿患此病的风险最高
支气管肺发育不良(BPD)是一种主要的早产并发症。这背后的机制
脆弱性的定义不明确,我们认为这是缺乏治疗性 BPD 的根本原因
疗法。为了了解 BPD 中肺泡生成受阻的不可逆性,我们需要一种精细的、
对正常囊泡到肺泡转变的机制的理解。我们的初步数据来自 4-
三维实时成像和单细胞转录组学支持肺泡发生的新模型,其中
肌成纤维细胞环结构支持 AT2(肺泡 2 型细胞)的挤出,然后是它们的
分化为 AT1(肺泡 1 型细胞)。根据我们的模型,成熟的 AT1 产生 ECM 蛋白
以及招募专门的内皮细胞成为肺泡毛细血管床的其他因素。顺序,
时空限制的信号通路,包括 Wnt 和 BMP,协调细胞运动,
扩散和建筑。我们开发了一种新生儿损伤模型,其表型为受损
通过将新生小鼠暴露在高氧和炎症环境中,肺泡发生与人类 BPD 相关
囊状阶段。我们从该模型中得到的初步数据将 Wnt5A/Wnt11 的过度表达与
肺泡生成受损。损伤后缺陷包括肺泡中 BMP 产生和活动减少
上皮细胞和 AT2 向 AT1 细胞分化受损以及细胞外基质表达减少
(ECM) 成分由 AT1 细胞组成。根据初步和已发布的数据,我们假设
肺泡发生涉及表达 Wnt5a 和 Wnt 11 以驱动 AT2 的肌成纤维细胞环的形成
增殖并促进通过环的挤压。随后上皮 BMP 的产生下调
Wnt,促进 AT2 向 AT1 分化并生成用于毛细血管组装的细胞外支架。
损伤导致 Wnt 和 Bmp 信号传导失调,扰乱了这一关键时期的精确时空模式
时间框架并导致肺泡发生停滞和长期功能缺陷。我们将测试这个
假设的具体目标如下:1)明确肌成纤维细胞Wnt表达在调节中的作用
AT2增殖和肺泡发育; 2) 表征 BMP 信令的机制
调节 AT2 至 AT1 细胞分化; 3) 确定新生AT1细胞的机制
为发育中的肺泡生成支架。预计该提案的成功完成
改变我们对肺泡生成的理解,确定新的分子靶标以促进损伤后的恢复
肺泡恢复和部署此类新定向疗法的最佳时间窗口。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer MalcolmSrygley Sucre其他文献
Jennifer MalcolmSrygley Sucre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer MalcolmSrygley Sucre', 18)}}的其他基金
Wnt Signaling in Bronchopulmonary Dysplasia
支气管肺发育不良中的 Wnt 信号转导
- 批准号:
10226945 - 财政年份:2019
- 资助金额:
$ 72.89万 - 项目类别:
Wnt Signaling in Bronchopulmonary Dysplasia
支气管肺发育不良中的 Wnt 信号转导
- 批准号:
10458630 - 财政年份:2019
- 资助金额:
$ 72.89万 - 项目类别:
Wnt Signaling in Bronchopulmonary Dysplasia
支气管肺发育不良中的 Wnt 信号转导
- 批准号:
10671760 - 财政年份:2019
- 资助金额:
$ 72.89万 - 项目类别:
相似国自然基金
FOXD1-SFRP2及其特异性激动剂在骨关节炎中的功能及作用机制探究
- 批准号:82372438
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
脂质纳米粒体内介导嵌合抗原受体-M1型巨噬细胞协同TLR激动剂治疗实体瘤的研究
- 批准号:82304418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型IL2Rβγ激动剂逐级控释联合放疗对抗三阴性乳腺癌的作用及机制研究
- 批准号:82303819
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TRPV4/SKCa信号轴在AMPK激动剂抑制微小动脉舒张作用中的机制研究
- 批准号:82304584
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向STING激动剂和TREM2抑制剂增强PD-1抑制剂对胰腺癌的抗肿瘤作用研究
- 批准号:82303740
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of peroxisome proliferator-activated receptor-alpha regulation in peridontitis
过氧化物酶体增殖物激活受体-α在牙周炎中的调节机制
- 批准号:
10915090 - 财政年份:2023
- 资助金额:
$ 72.89万 - 项目类别:
Antiviral innate immune responses to pathogenic coronaviruses in the nasal epithelium
鼻上皮中针对致病性冠状病毒的抗病毒先天免疫反应
- 批准号:
10678393 - 财政年份:2023
- 资助金额:
$ 72.89万 - 项目类别:
Assessing the role of Type I Interferon (IFN-I) in Periodontal Disease
评估 I 型干扰素 (IFN-I) 在牙周病中的作用
- 批准号:
10558868 - 财政年份:2023
- 资助金额:
$ 72.89万 - 项目类别: