4DVOLC: Magma storage and ascent in volcanic systems via time resolved HPHT x-ray tomographic experiments and numerical modelling of eruption dynamics

4DVOLC:通过时间分辨 HPHT X 射线断层扫描实验和喷发动力学数值模拟,火山系统中的岩浆储存和上升

基本信息

  • 批准号:
    MR/V023985/1
  • 负责人:
  • 金额:
    $ 194.55万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Volcanoes are amongst the most powerful and dangerous natural manifestations on Earth. Eight million people live in the shadow of volcanoes. Bettering our current understanding of volcano system behaviour to improve hazard assessment and risk mitigation is therefore imperative for scientists and governmental authorities operating in active volcanic areas. The primary goal of this project is to create an empirically constrained quantitative description of magma vesiculation and crystallisation kinetics and to apply this to address key volcanological questions through a numerical model framework and observations of the natural system. To this aim, we will combine in situ 4D (time+space) synchrotron x-ray microtomographic experiments to visualise and quantify magma crystallisation and degassing at HPHT with state-of-the-art numerical modelling and observations of natural volcanic textures. This approach will revolutionise experimental petrology and volcanology and will create a paradigm shift in the ability to understand, quantify and forecast volcanic eruptions and their impact on society and climate. To achieve this goal, we plan to exploit the potential of a new x-ray transparent IHPV (internally heated pressure vessel), which is deployed in the framework of another grant, to address fundamental questions that have puzzled Earth scientists for decades: 1) what is the relationship between magma dynamics and transport at depth and the volcanic activity and signals that we watch at the surface? 2) how and why do transitions between explosive and effusive volcanic activity occur and how can we model and predict them? By exploiting the new IHPV, we will perform studies on magma vesiculation and crystallisation kinetics, which play a key role in such transitions, by applying in situ 4D x-ray computed microtomography imaging to magmas of different compositions, volatile and crystal content. The results of the 4D experiments on magma kinetics at the micro scale will be used to derive improved empirical laws of magma viscosity under evolving crystallisation and vesiculation conditions as a function of cooling and decompression rates, and then will be implemented with these latter into a large scale multiphase, multicomponent numerical model of the physical behaviour of magma in volcanic conduits. The model will be developed at the University of Manchester in collaboration with colleagues from the US. The overall findings will be then validated by, and compared with, observations and measurements from well studied natural volcanic eruptions in Italy and Reunion, which both host hazardous, inhabited active volcanic areas. In the event of an eruption, which is likely to happen on Reunion within the time frame of the project, the model will be used in collaboration with the local volcano observatory to constrain eruption forecasting and evolution in real time. With this holistic approach, the research project will generate an exceptionally reliable tool for investigating and quantifying volcano dynamics in both quiescent and eruptive conditions. Such tool will be used by volcano observatories/stakeholders before and during eruption breakout for tracking changes in volcano surface phenomena (i.e., deformation) and eruptive style and make predictions on the eruption evolution. The multidisciplinary, ground-breaking, scientific nature of the project will have a very strong positive impact on the future of volcanology in the UK, and will increase the UK potential over worldwide research. Ultimately, by exploiting the full potential of the new experimental apparatus, the project will produce a key experimental resource in the UK for future, novel investigations involving scientists from different areas of expertise within natural sciences and engineering.
火山是地球上最强大和最危险的自然现象之一。八百万人生活在火山的阴影下。因此,对于在活火山地区工作的科学家和政府当局来说,加深对火山系统行为的了解,以改进灾害评估和风险缓解势在必行。该项目的主要目标是创建一个基于经验约束的岩浆泡化和结晶动力学定量描述,并通过数值模型框架和对自然系统的观察将其应用于解决关键的火山学问题。为了实现这一目标,我们将结合原位 4D(时间+空间)同步加速器 X 射线显微断层摄影实验,通过最先进的数值建模和对天然火山纹理的观察,对高温高压下的岩浆结晶和脱气进行可视化和量化。这种方法将彻底改变实验岩石学和火山学,并将在理解、量化和预测火山喷发及其对社会和气候影响的能力方面产生范式转变。为了实现这一目标,我们计划利用新的 X 射线透明 IHPV(内部加热压力容器)的潜力,该容器已在另一项拨款的框架内部署,以解决困扰地球科学家数十年的基本问题:1)岩浆动力学和深层输送与我们在地表观察到的火山活动和信号之间有什么关系? 2)爆发性火山活动和喷发性火山活动之间的转变如何以及为何发生,我们如何建模和预测它们?通过利用新的 IHPV,我们将通过对不同成分、挥发物和晶体含量的岩浆应用原位 4D X 射线计算机显微断层扫描成像,对岩浆泡化和结晶动力学进行研究,这在这种转变中发挥着关键作用。微观尺度岩浆动力学 4D 实验的结果将用于导出在不断演变的结晶和泡化条件下作为冷却和减压速率的函数的岩浆粘度的改进经验定律,然后将这些结果应用于大型研究中。火山管道中岩浆物理行为的尺度多相、多组分数值模型。该模型将在曼彻斯特大学与美国同事合作开发。然后,总体研究结果将通过对意大利和留尼汪岛自然火山喷发的深入研究的观察和测量进行验证并进行比较,这两个国家都有危险的、有人居住的活火山区。如果在项目的时间范围内留尼汪岛很可能发生喷发,该模型将与当地火山观测站合作使用,以实时约束喷发预测和演变。通过这种整体方法,该研究项目将产生一个极其可靠的工具,用于调查和量化静止和喷发条件下的火山动力学。火山观测站/利益相关者将在喷发爆发之前和爆发期间使用此类工具来跟踪火山表面现象(即变形)和喷发类型的变化,并对喷发演化做出预测。该项目的多学科、突破性和科学性将对英国火山学的未来产生非常强烈的积极影响,并将增加英国在全球研究中的潜力。最终,通过充分利用新实验设备的潜力,该项目将为英国提供关键的实验资源,用于未来涉及自然科学和工程学不同专业领域的科学家的新颖研究。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phase equilibrium experiments and thermodynamic simulations to constrain the pre-eruptive conditions of the 2021 Tajogaite eruption (Cumbre Vieja volcano, La Palma, Canary Islands)
相平衡实验和热力学模拟,以限制 2021 年塔乔盖特火山喷发(加那利群岛拉帕尔马岛 Cumbre Vieja 火山)的喷发前条件
  • DOI:
    10.1016/j.jvolgeores.2023.107901
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    A. Fabbrizio;Emily C. Bamber;Eleni Michailidou;Jorge E. Romero;F. Arzilli;B. Bonechi;M. Polacci;Mike Burton
  • 通讯作者:
    Mike Burton
Outgassing behaviour during highly explosive basaltic eruptions
高爆炸性玄武岩喷发期间的放气行为
Numerical modelling of sudden eruptive style transitions at basaltic volcanoes
玄武岩火山突然喷发风格转变的数值模拟
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Biagioli E
  • 通讯作者:
    Biagioli E
Quantifying dendritic crystallization in hydrous basaltic magmas through 4D experiments with in situ view: implications for magma mobility within the Earth’s crust
通过原位视图的 4D 实验量化含水玄武岩浆中的树枝状结晶:对地壳内岩浆流动性的影响
  • DOI:
    http://dx.10.5194/egusphere-egu24-2569
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arzilli F
  • 通讯作者:
    Arzilli F
Benchmarking a new 2.5D shallow water model for lava flows
对熔岩流的新 2.5D 浅水模型进行基准测试
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Margherita Polacci其他文献

Margherita Polacci的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

造山型金矿床是否有岩浆热液流体贡献?以西秦岭以地南金矿床为例
  • 批准号:
    42303067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
东南欧古-新特提斯转变构造-岩浆过程及动力学
  • 批准号:
    42320104007
  • 批准年份:
    2023
  • 资助金额:
    209 万元
  • 项目类别:
    国际(地区)合作与交流项目
辽东鞍山-抚顺地区太古宙中-基性岩浆岩成因和壳幔动力学演化
  • 批准号:
    42372234
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
塔里木东北缘二叠纪镍铜矿床富矿岩体岩浆演化与成矿金属富集机制
  • 批准号:
    42373071
  • 批准年份:
    2023
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
黄陵穹隆南部新元古代俯冲起始-碰撞造山岩浆-构造变质作用及其动力学意义
  • 批准号:
    42372268
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

NSFGEO-NERC: Imaging the magma storage region and hydrothermal system of an active arc volcano
NSFGEO-NERC:对活弧火山的岩浆储存区域和热液系统进行成像
  • 批准号:
    NE/X000656/1
  • 财政年份:
    2025
  • 资助金额:
    $ 194.55万
  • 项目类别:
    Research Grant
NERC-NSFGEO: Imaging the magma storage region and hydrothermal system of an active arc volcano
NERC-NSFGEO:对活弧火山的岩浆储存区域和热液系统进行成像
  • 批准号:
    2404029
  • 财政年份:
    2024
  • 资助金额:
    $ 194.55万
  • 项目类别:
    Continuing Grant
Phase equilibria experiments to constrain magma storage at Mt Churchill, Alaska; refining the magmatic source of the White River Ash eruptions
阿拉斯加丘吉尔山限制岩浆储存的相平衡实验;
  • 批准号:
    2308646
  • 财政年份:
    2023
  • 资助金额:
    $ 194.55万
  • 项目类别:
    Standard Grant
Mineral records of magma storage and crystallization on the Moon
月球上岩浆储存和结晶的矿物记录
  • 批准号:
    2594636
  • 财政年份:
    2021
  • 资助金额:
    $ 194.55万
  • 项目类别:
    Studentship
CAREER: Rethinking the Dynamics of Magma Storage and Eruption for Yellowstone’s Youngest Supereruption’
职业生涯:重新思考黄石公园最年轻的超级喷发的岩浆储存和喷发动力学
  • 批准号:
    2042662
  • 财政年份:
    2021
  • 资助金额:
    $ 194.55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了