Computational Statistics to Tackle Modern Slavery

解决现代奴隶制问题的计算统计

基本信息

  • 批准号:
    MR/X034992/1
  • 负责人:
  • 金额:
    $ 147.27万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

If we are to meet the United Nation's Sustainable Development Goals by their target of 2030, we need to develop better statistical methods to map the prevalence of vulnerable populations. In this fellowship, I will A. carry out foundational research into effective computational statistics methods for hidden populations, B. use the methods to map modern slavery at local, national and international levels, and C. work with my project partners to change policy based on our evidence-based research. To meet the Sustainable Development Goals, we need to measure how close we are to meeting them, quantify who is most in need of support and evaluate how successful interventions are in creating sustainable development. Take, for example, victims of modern slavery. Victims are often marginalised and hidden, with abuses going unreported and unmonitored. Estimating how many victims there are, where the abuses are happening and evaluating the effectiveness of interventions to support victims remain a challenge to the field of modern slavery and sustainable development more broadly. Data about victims and abuses is often noisy, poor quality or simply not collected. Developments in computational statistics can be really powerful here. They will provide a framework to deal with poor quality and missing data, while simultaneously avoiding specific and arbitrary assumptions about how the abuses are happening. Current methods require researchers to make specific assumptions about the abuses they are modelling which are difficult to justify from the data. The methods I develop will move away from this, instead making more general, mathematical assumptions. This will allow the data to speak for itself and can provide better counterfactual evidence and more realistic conclusions. To meet this aim, I bring a strong track record of developing these methods for epidemics, where my methods have been shown to reduce the need for specific assumptions when the data is poor quality. However, this flexibility comes at the cost of a larger computational burden, increased uncertainty in the results, and a requirement for technical expertise when using the methods. To speed up progress to meeting the Sustainable Development Goals, researchers need methods that can be used in practice. I will lead the development of effective computational statistical methods. By reducing the computational burden, providing mechanisms to deal with the uncertainty in the results, and making methods easy to implement, they will become much more attractive to non-statisticians. I have already shown how my developments can considerably reduce the data collection burden when mapping poverty, making these methods more attractive to research and organisations working in poverty reduction. A key part of this fellowship is collaboration with a research software engineer who can develop data systems and software that other researchers and organisations can use to implement my methods. I will use my methods to solve pressing problems in modern slavery and advance the field to meet the UN's goal to end slavery by 2030. I will work with my project partners to map modern slavery at local, national and international levels. This fellowship has the potential to save lives and show how computational statistics can advance progress towards the Sustainable Development Goals. By leveraging support from my project partners, I will influence politicians and policy makers to use my results to safeguard victims and prevent potential victims from suffering from modern slavery abuses.
如果我们要通过2030年的目标实现联合国的可持续发展目标,我们需要开发更好的统计方法来绘制弱势群体的流行。在此奖学金中,我将A。对隐藏人群的有效计算统计方法进行基础研究,B。使用这些方法在本地,国家和国际层面绘制现代奴隶制,并与我的项目合作伙伴一起根据我们的基于证据的研究来改变政策。为了满足可持续发展目标,我们需要衡量我们与他们相遇的距离,量化谁最需要支持的人并评估干预措施在创造可持续发展方面的成功程度。以现代奴隶制的受害者为例。受害者经常被边缘化和隐藏,虐待行为未报告和不受监控。估计有多少受害者正在发生虐待行为,并评估支持受害者的​​干预措施的有效性仍然是对现代奴隶制和可持续发展领域的挑战。有关受害者和虐待的数据通常是嘈杂的,质量差或根本没有收集的。计算统计中的发展在这里确实很强大。他们将提供一个框架来处理质量差和丢失数据,同时避免了有关滥用情况的特定和任意假设。当前的方法要求研究人员对他们建模的滥用行为做出具体的假设,这些假设很难从数据中证明是合理的。我开发的方法将摆脱这种方式,而是做出更一般的数学假设。这将使数据能够说明自己,并可以提供更好的反事实证据和更现实的结论。为了实现这一目标,我带来了为流行病开发这些方法的良好记录,在这些方法中,我的方法已被证明在数据质量差时减少了对特定假设的需求。但是,这种灵活性是以较大的计算负担,结果增加的不确定性以及使用方法专业知识的要求。为了加快实现可持续发展目标的进步,研究人员需要可以在实践中使用的方法。我将领导有效的计算统计方法的开发。通过减轻计算负担,提供解决结果不确定性的机制,并使方法易于实施,它们将对非统计学家变得更具吸引力。我已经展示了我的发展如何在绘制贫困时可以大大减轻数据收集负担,从而使这些方法对减少贫困的研究和组织更具吸引力。该奖学金的关键部分是与研究软件工程师合作,他们可以开发其他研究人员和组织可以用来实施我的方法的数据系统和软件。我将使用我的方法来解决现代奴隶制中的紧迫问题,并促进该领域的目标,以实现联合国在2030年结束奴隶制的目标。我将与我的项目合作伙伴合作,在当地,国家和国际层面上绘制现代奴隶制。该奖学金有潜力挽救生命并展示计算统计如何将进步迈向可持续发展目标。通过利用我的项目合作伙伴的支持,我将影响政治家和政策制定者使用我的结果来保护受害者,并防止潜在的受害者免受现代奴隶制虐待。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rowland Seymour其他文献

Rowland Seymour的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

中国与贸易伙伴贸易统计数据差异:基于企业错报动机的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
协同VIIRS时序遥感影像与统计数据的农作物丰度提取方法研究
  • 批准号:
    41901380
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
海量文本数据下实体智能近似匹配的关键技术研究
  • 批准号:
    61702346
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
复杂统计数据的参数和半参数模型选择及在金融大数据中的应用
  • 批准号:
    11671059
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
多维统计数据下服役期大跨预应力混凝土梁结构疲劳寿命的可靠性分析
  • 批准号:
    51578431
  • 批准年份:
    2015
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目

相似海外基金

REU Site: DRUMS Directed Research for Undergraduates in Math and Statistics
REU 网站:DRUMS 为数学和统计学本科生指导的研究
  • 批准号:
    2349611
  • 财政年份:
    2024
  • 资助金额:
    $ 147.27万
  • 项目类别:
    Continuing Grant
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
  • 批准号:
    2403813
  • 财政年份:
    2024
  • 资助金额:
    $ 147.27万
  • 项目类别:
    Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
  • 批准号:
    ES/Z50290X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 147.27万
  • 项目类别:
    Research Grant
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
  • 批准号:
    10827051
  • 财政年份:
    2024
  • 资助金额:
    $ 147.27万
  • 项目类别:
CAREER: Strengthening the Theoretical Foundations of Federated Learning: Utilizing Underlying Data Statistics in Mitigating Heterogeneity and Client Faults
职业:加强联邦学习的理论基础:利用底层数据统计来减轻异构性和客户端故障
  • 批准号:
    2340482
  • 财政年份:
    2024
  • 资助金额:
    $ 147.27万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了