Harnessing mega-constellations to probe space weather globally
利用巨型星座探测全球空间天气
基本信息
- 批准号:MR/X034704/1
- 负责人:
- 金额:$ 162.51万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The changing conditions in near-Earth space cause space weather. This poses a risk to our everyday lives through the technology we rely upon. Space weather impacts on crucial power, communications, navigation, and transport systems. Monitoring and forecasting it is thus vital.The processes that drive space weather globally are not well understood. The interplay between Earth's magnetic field and charged particles blowing from the Sun forms a protective shield in space, known as the magnetosphere. Space weather occurs because this shield is neither perfect nor static. Energy penetrates our magnetosphere and gets distributed to different regions inside it. But the global response is greater than the sum of its parts. Local processes alone cannot explain the overall response. Instead, space weather phenomena appear to emerge from the complex system itself. To better understand what causes space weather requires a global approach.Large groups of satellites working together, known as constellations, are required. Achieving this through traditional space missions is too expensive. Satellite operators are now launching commercial mega-constellations for communications services. These consist of hundreds to thousands of satellites in low Earth orbit. This orbit is at the interface between the top of our atmosphere and the magnetosphere. How space weather is mediated between these regions is still an open question. So mega-constellations are perfectly placed for space weather monitoring. The satellites use measurements of Earth's magnetic field to orient themselves. But these instruments can detect the signatures of space weather also. This fellowship will thus harness mega-constellations as a tool for monitoring space weather.Mega-constellations provide an unprecedented number of globally distributed observation points in space. I will develop new processing tools to use this data. These will extract and resolve the ever-changing electrical currents mediating space weather. Computer simulations will test the limits of what is achievable. These results will inform requirements on future mega-constellation designs for space weather monitoring. Machine learning will also combat the challenges of analysing "big data" in space. I will adapt methods developed from other fields for use in space weather science. These will reduce the amount of data to analyse and identify patterns present. They will have broad applications across current and upcoming missions, facilities, and simulations.I have partnered with a mega-constellation operator to put these methods into practice. This will establish the current space weather capabilities of mega-constellations. I will derive a new global activity index from this data. This will eliminate the errors and biases in those currently used. A pipeline producing this index in real-time will yield new space weather warnings.Dedicated campaigns will also further scientific research into what drives space weather. These coincide with the upcoming increase in solar activity. The campaigns will focus on waves that emerge during intense space weather events. Like a musical instrument, these waves are processed and guided by their environment. This forms a complex orchestra that encompasses our planet. But we do not know the global nature of this symphony and its importance in space weather. The mega-constellation will at last reveal the structure of the different waves. I will thus determine their effects on space radiation, atmospheric heating, and currents in the ground. This will advance our understanding of how these waves contribute to space weather.This fellowship will revolutionise space weather monitoring by harnessing mega-constellations. It will yield a step-change in capability. Global data will unveil how space weather works, improving our ability to predict it. The fellowship will thus boost our ability to mitigate this threat to society.
近地空间的变化导致空间天气。通过我们依靠的技术,这给我们的日常生活带来了风险。太空天气对关键动力,通信,导航和运输系统影响。因此,监视和预测至关重要。在全球范围内驱动空间天气的过程尚不清楚。地球磁场和从太阳吹来的带电颗粒之间的相互作用形成了空间中的保护屏蔽,称为磁层。太空天气之所以发生,是因为此盾牌既不完美也不是静态的。能量穿透我们的磁层,并分布到其中的不同区域。但是全球响应大于其部分的总和。仅本地流程就无法解释整体响应。取而代之的是,空间天气现象似乎从复杂的系统本身中出现。为了更好地理解原因是什么原因导致空间天气需要全球方法。需要一组卫星(称为星座)一起工作。通过传统太空任务实现这一目标太贵了。卫星运营商现在正在为通信服务推出商业大型构造。这些由低地球轨道中的数百至数千颗卫星组成。该轨道位于我们大气顶部和磁层之间的界面。这些地区之间如何介导太空天气仍然是一个悬而未决的问题。因此,巨型构造非常适合用于太空天气监测。卫星使用地球磁场的测量来定向自身。但是这些仪器也可以检测到太空天气的签名。因此,该奖学金将利用巨型构造作为监测太空天气的工具。梅加构造提供了空间中空间的空前分布观测点的空前数量。我将开发新的处理工具来使用此数据。这些将提取和解决不断变化的电流,介导空间天气。计算机模拟将测试可实现的限制。这些结果将为空间天气监控的未来大型施加设计设计提供信息。机器学习还将应对分析太空中“大数据”的挑战。我将调整从其他领域开发的用于太空天气科学的方法。这些将减少分析和识别存在模式的数据量。他们将在当前和即将到来的任务,设施和模拟中拥有广泛的应用程序。这将确定当前的大型构造的空间天气能力。我将从此数据中获取新的全球活动索引。这将消除当前使用的错误和偏见。实时生产该指数的管道将产生新的空间天气警告。设计的活动还将进一步科学研究,以驱动太空天气。这些与即将增加的太阳能活动相吻合。这些活动将集中在强烈的太空天气事件中出现的波浪。像乐器一样,这些波浪是在环境中处理和指导的。这形成了一个复杂的乐团,涵盖了我们的星球。但是我们不知道这种交响曲的全球性质及其在太空天气中的重要性。巨型构造最终将揭示不同波浪的结构。因此,我将确定它们对空间辐射,大气加热和地面电流的影响。这将使我们对这些海浪如何有助于太空天气的理解。该奖学金将通过利用巨型构造来彻底改变太空天气监测。它将产生能力的逐步变化。全球数据将揭示太空天气的工作原理,从而提高我们预测它的能力。因此,奖学金将提高我们减轻对社会威胁的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Archer其他文献
Martin Archer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Archer', 18)}}的其他基金
"I'm a Space Person" Careers Postcards
“我是太空人”职业明信片
- 批准号:
ST/W00545X/1 - 财政年份:2022
- 资助金额:
$ 162.51万 - 项目类别:
Research Grant
Cosmic Ray Muon Research in Schools
学校的宇宙射线μ介子研究
- 批准号:
ST/N005457/1 - 财政年份:2016
- 资助金额:
$ 162.51万 - 项目类别:
Research Grant
相似国自然基金
燃气轮机燃烧室热声振荡的声—涡—火焰耦合机理及先兆预警方法研究
- 批准号:52305137
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
深埋矿山大结构采场中高阶段矿柱破裂失稳机制及前兆信息研究
- 批准号:42377175
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
HL-2M兆安级条件下中性粒子对L-H模转换影响的集成模拟与实验研究
- 批准号:12375210
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
基于兆声空化射流抛光的超光滑表面创成机制与工艺研究
- 批准号:62305334
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于界面理论的兆瓦级光伏变流装置多工况多热源电-热耦合机理与协同调控研究
- 批准号:52377178
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
高感度電極プローブによる長期計測でうつ症状の予兆を検知する
使用高灵敏度电极探针通过长期测量来检测抑郁症迹象
- 批准号:
24K15724 - 财政年份:2024
- 资助金额:
$ 162.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
分析的手法を用いた中小企業における不正の兆候発見と内部統制に関する総合的研究
利用分析方法检测中小企业欺诈和内部控制迹象的综合研究
- 批准号:
24K04618 - 财政年份:2024
- 资助金额:
$ 162.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
高精度二次元計測デバイリングによるレールの転動接触疲労の予兆解明
使用高精度二维测量装置环阐明钢轨滚动接触疲劳迹象
- 批准号:
23K20911 - 财政年份:2024
- 资助金额:
$ 162.51万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
シミュレーションと深層学習の融合による生態系レジームシフト予兆シグナルの開発
通过模拟和深度学习的融合开发生态系统状态转变前兆信号
- 批准号:
24K03127 - 财政年份:2024
- 资助金额:
$ 162.51万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Transformerを用いた多次元時系列データの異常予兆検知
使用 Transformer 检测多维时间序列数据中的异常符号
- 批准号:
24K20777 - 财政年份:2024
- 资助金额:
$ 162.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists