LIONESS - Light-controlled nanomagnetic and spintronic applications via magneto-thermoplasmonics

LIONESS - 通过磁热等离子体的光控纳米磁性和自旋电子应用

基本信息

  • 批准号:
    MR/X033910/1
  • 负责人:
  • 金额:
    $ 159.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Major breakthroughs in information technologies over the past 50 years have relied heavily on knowledge of electronic processes, utilisation of magnetic states (such as giant magnetoresistance read heads for hard drives) and usage of lasers (e.g., CDs and fibre optics). Today, information technologies are ubiquitous, allowing us to solve more and more complex computational problems than ever.Nowadays, a key concern is to improve the efficiency of digital devices, coupled with miniaturisation and increased processing speed, as the increase in computational power and data density comes at high costs with respect to energy consumption. This is made worse by the fact that - rather than being used in an effective way - a sizeable fraction of electricity used to drive modern chips gets dissipated as heat, which can have negative effects on device performance and data retention.However, heat itself is not bad, and particularly interesting phenomena potentially useful for future computational devices, occur in situations where the temperature distribution is not uniform, e.g., if one side of a device is hot while its opposite side is cold. In combination with magnetic materials, such heat differentials can be used to (i) generate electricity, (ii) move spin structures that encode information bits, or (iii) enhance unconventional computing schemes by their intrinsic stochasticity. To date, our experimental understanding of these effects, and their effective integration into devices is hampered by the fact that contemporary methods to create heat differentials lack the flexibility to be suitable for miniaturised technological applications, as they are slow and have large spatial extension, can be prone to damage, and - most importantly - are not reconfigurable.Taking inspiration from the field of photonics and functional magnetic materials, here I will implement a hybrid approach for novel magneto-thermoplasmonic devices: The main objective of the Fellowship is to develop a novel experimental platform enabling fast, precise, and reconfigurable optical control of nano- to microscale temperature distributions by light for key magnetic and spintronic applications. Specific aims are to (i) create fast and optically reconfigurable spin current generators, (ii) experimentally quantify the thermally driven motion of spin textures to further our understanding of fundamental phenomena, and (iii) use light as a flexible and high-bandwidth input for unconventional nanomagnetic computation schemes.The research outputs generated with the Fellowship will tackle fundamental questions regarding non-equilibrium behaviour of magnetic materials, and the newly developed magneto-thermoplasmonic platform will generate impact on the areas of spintronics, optically reconfigurable metamaterials, and energy.
在过去的50年中,信息技术的重大突破在很大程度上依赖于电子过程的知识,磁状态的利用(例如,巨型磁磁性读取的头部用于硬盘驱动器)和激光器的使用(例如CDS和光纤选择)。如今,信息技术无处不在,使我们能够比以往任何时候都更加复杂,更复杂的计算问题。现在,关键问题是提高数字设备的效率,再加上小型化和加工速度,随着计算能力和数据的增加而增加的处理速度密度在能源消耗方面高昂。由于 - 不用以有效的方式使用而不是用来驱动现代芯片的大量电力被消散,这可能会对设备性能和数据保留产生负面影响,这使情况变得更糟。还不错,特别有趣的现象可能对未来的计算设备有用,发生在温度分布不均匀的情况下,例如,如果设备的一侧很热,而其相反的一侧很冷。结合磁性材料,此类热差异可用于(i)产生电力,(ii)移动编码信息位的自旋结构,或者(iii)通过其内在的随机性增强了非常规计算方案。迄今为止,我们对这些效果的实验理解及其有效整合到设备中受到了以下事实的阻碍:当代创建热差异的方法缺乏适合小型技术应用的灵活性,因为它们缓慢并且具有很大的空间扩展,可以容易受到伤害,而且 - 最重要的是 - 从光子学和功能磁性材料领域中获取灵感,在这里,我将在这里实施一种用于新型磁性磁性磁性设备的混合方法:研究金的主要目的是发展一个新型实验平台可通过光对纳米温度分布进行快速,精确和可重构的光学控制,用于关键的磁性和自旋应用。具体目的是(i)创建快速,光学地重新配置的自旋电流发生器,(ii)实验量化自旋纹理的热驱动运动,以进一步了解我们对基本现象的理解,(iii)将光作为灵活且高带宽输入对于非常规的纳米磁计算方案。奖学金产生的研究输出将解决有关磁性材料非平衡行为的基本问题,而新开发的磁性磁性平台将对Spintronics的领域产生影响,可很好地重新配置可抗化的Metagronials和能量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Naëmi Leo其他文献

Naëmi Leo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

光温信号协同激素信号调控番茄株型的分子机制
  • 批准号:
    32330094
  • 批准年份:
    2023
  • 资助金额:
    216 万元
  • 项目类别:
    重点项目
纳米金仿生复合荧光-光声肝癌靶向多模态诊疗纳米制剂的构建及性能研究
  • 批准号:
    52371250
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
细胞外囊泡无标记分选芯片及其光流体操控机制研究
  • 批准号:
    62375244
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向数据中心光交换端网融合调度与协同控制技术研究
  • 批准号:
    62301062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
钽铌酸钾晶体多效应耦合及光场调控极化序构的电光性能增益机制研究
  • 批准号:
    62305089
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Materials that unlock light-controlled specific separations to enable sustainable desalination (LUCENT)
解锁光控特定分离以实现可持续海水淡化的材料(LUCENT)
  • 批准号:
    EP/X042286/1
  • 财政年份:
    2024
  • 资助金额:
    $ 159.79万
  • 项目类别:
    Fellowship
Development of water splitting photoelectrochemical cell using liquid phase-flux controlled sputtering method
液相通量控制溅射法水分解光电化学电池的研制
  • 批准号:
    23H01907
  • 财政年份:
    2023
  • 资助金额:
    $ 159.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Spin-controlled optical oscillator using the spin-optical oscillation phenomenon
利用自旋光振荡现象的自旋控制光振荡器
  • 批准号:
    23K17758
  • 财政年份:
    2023
  • 资助金额:
    $ 159.79万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
A Stage 1 Pilot Test for Feasibility and Efficacy of a Multi-Level Intervention To Increase Physical Activity in Adults with Intellectual Disability: Step it Up +
第一阶段试点测试多层次干预措施的可行性和有效性,以增加智力障碍成人的体力活动:加快步伐
  • 批准号:
    10585633
  • 财政年份:
    2023
  • 资助金额:
    $ 159.79万
  • 项目类别:
Identifying multimodal biomarkers for autologous serum tears in the treatment of chronic postoperative ocular pain
识别治疗慢性术后眼痛的自体血清泪液的多模式生物标志物
  • 批准号:
    10794761
  • 财政年份:
    2023
  • 资助金额:
    $ 159.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了