Materials that unlock light-controlled specific separations to enable sustainable desalination (LUCENT)

解锁光控特定分离以实现可持续海水淡化的材料(LUCENT)

基本信息

  • 批准号:
    EP/X042286/1
  • 负责人:
  • 金额:
    $ 171.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Recycling urban wastewater into usable clean water is an environmental win.Using renewable energy to power this process reduces its carbon footprint and makes this idea even better.What about obviating waste generation from this low-carbon process by recovering waste components as resources without using chemicals that typically generate more waste?With 380 billion cubic metres of municipal wastewater produced globally in 2020 where every litre of this wastewater contains 0.75 mg of Zn, 285,000 metric tonnes of Zn can be recovered from global municipal wastewater. This is about 2% of the world's total Zn consumption in 2021. In a UK context, about 4300 tonnes of Zn can be recovered from UK municipal wastewater per year - about 5% of the Zn imported into the UK. However, the recovery of heavy metals from municipal wastewater is not practiced currently and these valuable resources are lost to the environment as the effluents of treated wastewater are discharged into the environment. This is due to the low metal concentrations in this wastewater and the recovery of metals from such dilute mixtures with legacy technologies typically create more waste. Moving towards a circular economy, it is crucial that these valuable metals are reclaimed without creating more wastes in its own right.To solve such a global challenge, there is a need to re-think how metal-metal separations should be achieved, where the current focus is only on recovering metals from waste streams with high enough metal content. We should also consider how this process can be achieved in-situ of existing processes as well as obviating waste generation associated with chemicals used for separating metals from each other or to regenerate separation media.In this Fellowship I propose to design and engineer photo-responsive covalent organic frameworks, a class of microporous polymers with tailorable pore sizes, to achieve zero-waste specific metal-metal separations in-situ of desalination. I will use recent advancements in photo-modulated desalination to engineer a library of covalent organic frameworks that can specifically and reversibly complex with a target metal cation, separating various metal types from each other in complex and dilute mixtures into reusable high-purity metal streams.Light-responsive, zwitterionic molecules can separate cations and anions from water, and monovalent cations from divalent ions, as a function of their tailorable metal compatibility via chemical functionalisation. With training in computational simulations , I will design a series of chemically-functionalised zwitterionic photo-switches that can be embedded within the pores of covalent organic frameworks to separate metals from each other via a novel separation mechanism underpinned by size selection and specific metal complexation. I will validate the concept of light-controlled specific metal-metal separation in-situ desalination using these novel materials as adsorbents and membranes in bench-scale experiments using model and complex mixtures and real-world municipal wastewater samples. I will close the desalination waste loop associated with fabrication and end-of-life of desalination media by exploring the use of additive manufacturing technologies that reduce waste generation during membrane fabrication and depolymerisation techniques to recycle spent desalination media into reusable chemical compounds, respectively. Beyond exploiting the concept of light-controlled specific separations to unlock desalination as a circular economy solution, I will work with other researchers to explore using this technology in other applications such as organic solvent nanofiltration, drug delivery, self-cleaning coatings. I will also perform life cycle assessment studies to evaluate the sustainability and feasibility of technologies developed here for metal recovery from municipal wastewater.
将城市废水回收成可用的清洁水是一项环境胜利。使用可再生能源为这一过程提供动力可以减少其碳足迹,并使这个想法变得更好。通过在不使用化学品的情况下将废物成分回收为资源来避免这种低碳过程产生废物怎么样?通常会产生更多废物?2020 年,全球将产生 3800 亿立方米的城市废水,其中每升废水中含有 0.75 毫克锌,可生产 285,000 公吨锌从全球城市废水中回收。这约占 2021 年全球锌消费总量的 2%。在英国,每年可从英国城市废水中回收约 4300 吨锌,约占英国进口锌量的 5%。然而,目前还没有从城市废水中回收重金属,这些宝贵的资源随着处理后的废水排放到环境中而流失到环境中。这是因为这种废水中的金属浓度较低,并且使用传统技术从此类稀释混合物中回收金属通常会产生更多废物。迈向循环经济,至关重要的是回收这些有价值的金属,同时不产生更多废物。为了解决这一全球性挑战,有必要重新思考如何实现金属与金属的分离,其中目前的重点只是从金属含量足够高的废物流中回收金属。我们还应该考虑如何在现有工艺的原位实现这一过程,并避免与用于分离金属或再生分离介质的化学品相关的废物产生。在本奖学金中,我建议设计和设计光响应共价有机框架是一类具有可定制孔径的微孔聚合物,可实现海水淡化原位零废物特定金属-金属分离。我将利用光调制海水淡化领域的最新进展来设计一个共价有机框架库,该框架可以特异性地、可逆地与目标金属阳离子络合,将复杂和稀释混合物中的各种金属类型彼此分离,形成可重复使用的高纯度金属流。光响应性两性离子分子可以从水中分离阳离子和阴离子,以及从二价离子中分离一价阳离子,这是通过化学功能化实现其可定制的金属相容性的函数。通过计算模拟方面的培训,我将设计一系列化学功能化的两性离子光开关,这些光开关可以嵌入共价有机框架的孔内,通过以尺寸选择和特定金属络合为基础的新型分离机制将金属彼此分离。我将使用模型和复杂混合物以及真实的城市废水样本,在实验室规模的实验中验证光控特定金属-金属分离原位海水淡化的概念,使用这些新型材料作为吸附剂和膜。我将通过探索使用增材制造技术来减少与海水淡化介质的制造和使用寿命结束相关的海水淡化废物循环,以减少膜制造过程中废物的产生,并通过解聚技术将用过的海水淡化介质回收成可重复使用的化合物。除了利用光控特定分离的概念来解锁海水淡化作为循环经济解决方案之外,我还将与其他研究人员合作,探索将该技术应用于其他应用,例如有机溶剂纳滤、药物输送、自清洁涂层。我还将进行生命周期评估研究,以评估这里开发的从城市废水中回收金属的技术的可持续性和可行性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cher Hon Lau其他文献

Cher Hon Lau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

奇异位形工作的多杆锁机构尺度综合与公差设计理论及应用
  • 批准号:
    50875210
  • 批准年份:
    2008
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目

相似海外基金

Advanced Aeroponics 2: Value engineering to unlock 3x ROI in horticulture
Advanced Aeroponics 2:价值工程可实现园艺领域 3 倍的投资回报率
  • 批准号:
    10089184
  • 财政年份:
    2024
  • 资助金额:
    $ 171.8万
  • 项目类别:
    Collaborative R&D
Treecle - data and automation to unlock woodland creation in the UK to achieve net zero
Treecle - 数据和自动化解锁英国林地创造以实现净零排放
  • 批准号:
    10111492
  • 财政年份:
    2024
  • 资助金额:
    $ 171.8万
  • 项目类别:
    SME Support
CANFFUND - Cambridgeshire Governance Framework to unlock net zero finance
CANFFUND - 剑桥郡治理框架解锁净零金融
  • 批准号:
    10086491
  • 财政年份:
    2024
  • 资助金额:
    $ 171.8万
  • 项目类别:
    Demonstrator
Research: Building on Student Academic Engineering Knowledge to Unlock their Potential to Become Professional Engineers
研究:以学生学术工程知识为基础,释放他们成为专业工程师的潜力
  • 批准号:
    2341677
  • 财政年份:
    2024
  • 资助金额:
    $ 171.8万
  • 项目类别:
    Standard Grant
Capture: Regulating CaCO3 polymorphism to unlock the potential of carbonated steel slag as a cement replacement
捕获:调节 CaCO3 多态性以释放碳化钢渣作为水泥替代品的潜力
  • 批准号:
    EP/Y001117/1
  • 财政年份:
    2024
  • 资助金额:
    $ 171.8万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了