Accelerating plant breeding by modulating recombination.
通过调节重组加速植物育种。
基本信息
- 批准号:MR/T043253/1
- 负责人:
- 金额:$ 158.92万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
To meet expected demand, the world will need to produce 50 percent more food in 2050 than it did in 2012. While similar growth rates have been achieved in the past, future growth faces the additional pressure of climate change and the need for reduced chemical inputs. Sustainably enhancing agricultural production is therefore a major challenge facing the sector.A valuable source of traits for disease resistance and abiotic stress tolerance resides in thousands of living wild crop relatives. Accessing these traits for plant breeding, however, is limited by "genetic drag", where low levels of genetic exchange (recombination) means that both desirable and undesirable "wild traits" are introduced and can be difficult to separate. Boosting recombination overcomes genetic drag allowing access to diverse germplasm, as well as increasing the efficiency of traditional breeding programs, helping generate the new combinations of traits required for crop improvement in fewer generations.Recombination can be increased in plants 8-fold by knocking out anti-recombinase genes. However, establishing multigene knockouts in every breeding program is not practical, approaches used to generate mutants may preclude cultivation in tightly (GMO) regulated environments and the mutations introduced can reduce fertility, so wild type alleles must be restored prior to cultivation. Transiently increasing recombination without modification of the recombination machinery itself would solve these problems.To achieve this goal, we will use high-throughput screening assays to identify small molecule inhibitors of key recombination suppressing proteins that can be used to transiently boost recombination in a wide variety of crop species. To identify inhibitors, we will design targeted compound libraries for screening based on molecules identified in large biomedical drug screens that inhibit human orthologs of our target proteins. In addition, virtual screening of large compound libraries will be used to identify further compounds of interest for testing. We will also identify and/or develop plant versions of peptides known to boost recombination in mammalian systems. Once identified, delivery of recombination boosting small-molecules will be optimised for use in crops. This will be initially be undertaken in Brassica and barley, covering a dicot crop closely related to the model plant Arabidopsis, and a key grain crop, both with well-developed cytological tools. Another route for crop development is to incorporate the traits and diversity of two genomes into a single individual - known as allopolyploidy. Allopolyploid plants are common in agriculture (e.g. wheat and cotton) as their fixed hybrid nature usually results in improved agricultural traits. Despite their potential, previous attempts to generate new allopolyploid crops have failed as they tend to have genomic instability and low fertility due to recombination between the two sub-genomes. Two interacting genes have recently been implicated in suppressing this inter-genomic recombination and we will assess the potential to use/modify these genes, and others in the same pathway, to engineer a stable meiosis in new allopolyploids. If successful we will use this approach to generate new genetically stable allopolyploid Brassica and pasture grasses.This multi-disciplinary project, draws on expertise of the Fellow and Project Partners in molecular plant science, phenomics, plant breeding, polyploidy, medicinal chemistry and biochemistry to modify recombination in plants for accelerated plant breeding, helping to develop the high nutrition, climate ready and disease resistant crops needed to meet future food needs. The final three years of the project will involve product development in collaboration with breeding companies to optimise delivery and effectiveness during plant breeding and establishment of a start-up company to commercialise the product(s) developed.
为了满足预期需求,到 2050 年,世界将需要比 2012 年多生产 50% 的粮食。虽然过去已经实现了类似的增长率,但未来的增长面临着气候变化的额外压力以及减少化学品投入的需要。因此,可持续地提高农业产量是该部门面临的一项重大挑战。抗病性和非生物胁迫耐受性的宝贵性状来源存在于数千种现存的野生作物近缘种中。然而,利用这些性状进行植物育种受到“遗传阻力”的限制,其中低水平的遗传交换(重组)意味着引入了所需和不需要的“野生性状”,并且可能难以分离。促进重组克服了遗传阻力,允许获得不同的种质,并提高了传统育种计划的效率,有助于在更少的世代内产生作物改良所需的新性状组合。通过敲除抗基因,可以将植物中的重组增加 8 倍。 -重组酶基因。然而,在每个育种计划中建立多基因敲除并不切合实际,用于产生突变体的方法可能会妨碍在严格(转基因)监管的环境中进行培养,并且引入的突变会降低生育力,因此必须在培养之前恢复野生型等位基因。在不修改重组机制本身的情况下瞬时增加重组将解决这些问题。为了实现这一目标,我们将使用高通量筛选试验来鉴定关键重组抑制蛋白的小分子抑制剂,这些抑制剂可用于瞬时促进多种重组。作物种类。为了识别抑制剂,我们将根据大型生物医学药物筛选中鉴定出的抑制我们目标蛋白的人类直系同源物的分子,设计用于筛选的目标化合物库。此外,大型化合物库的虚拟筛选将用于识别更多感兴趣的化合物进行测试。我们还将鉴定和/或开发已知可促进哺乳动物系统重组的植物版本的肽。一旦确定,重组促进小分子的传递将被优化以用于农作物。这项研究最初将在芸苔属和大麦中进行,涵盖与模式植物拟南芥密切相关的双子叶作物,以及一种关键的谷物作物,这两种作物都拥有成熟的细胞学工具。作物发育的另一种途径是将两个基因组的性状和多样性整合到一个个体中 - 称为异源多倍体。异源多倍体植物在农业中很常见(例如小麦和棉花),因为它们的固定杂交性质通常会改善农业性状。尽管它们具有潜力,但之前产生新的异源多倍体作物的尝试都失败了,因为它们往往由于两个亚基因组之间的重组而具有基因组不稳定和低生育力。最近发现两个相互作用的基因与抑制这种基因组间重组有关,我们将评估使用/修改这些基因以及同一途径中的其他基因的潜力,以在新的异源多倍体中设计稳定的减数分裂。如果成功,我们将利用这种方法产生新的遗传稳定的异源多倍体芸苔属和牧草。这个多学科项目利用了研究员和项目合作伙伴在分子植物科学、表型组学、植物育种、多倍体、药物化学和生物化学方面的专业知识,修改植物重组以加速植物育种,帮助开发满足未来粮食需求所需的高营养、气候适应和抗病作物。该项目的最后三年将涉及与育种公司合作开发产品,以优化植物育种过程中的交付和有效性,并建立一家初创公司将开发的产品商业化。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Crossover interference: Just ZYP it.
交叉干扰:只需 ZYP 即可。
- DOI:http://dx.10.1073/pnas.2103433118
- 发表时间:2021
- 期刊:
- 影响因子:11.1
- 作者:Crismani W
- 通讯作者:Crismani W
Crossover patterning in plants.
植物中的交叉图案。
- DOI:http://dx.10.1007/s00497-022-00445-4
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Lloyd A
- 通讯作者:Lloyd A
Meiosis in allopolyploid Arabidopsis suecica.
异源多倍体拟南芥减数分裂。
- DOI:http://dx.10.1111/tpj.15879
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Nibau, Candida;Gonzalo, Adrian;Evans, Aled;Sweet-Jones, William;Phillips, Dylan;Lloyd, Andrew
- 通讯作者:Lloyd, Andrew
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Lloyd其他文献
A Revised Estimate of Early Pliocene Global Mean Sea Level Using Geodynamic Models of the Patagonian Slab Window
使用巴塔哥尼亚板窗的地球动力学模型对上新世早期全球平均海平面的修正估计
- DOI:
10.1029/2022gc010648 - 发表时间:
2023-01-24 - 期刊:
- 影响因子:3.7
- 作者:
A. Hollyday;J. Austermann;Andrew Lloyd;M. Hoggard;F. Richards;A. Rovere - 通讯作者:
A. Rovere
Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex.
梗死周围去极化导致缺血性环脑大脑皮层灌注丧失。
- DOI:
10.1093/brain/awl392 - 发表时间:
2006-11-21 - 期刊:
- 影响因子:0
- 作者:
A. Strong;P. J. Anderson;Helena R. Watts;D. Virley;Andrew Lloyd;E. Irving;T. Nagafuji;M. Ninomiya;Hajime Nakamura;A. Dunn;R. Graf - 通讯作者:
R. Graf
The DIVERSE Study: Determining the Importance of Various gEnders, Races, and body Shapes for CPR Education using manikins.
多元化研究:使用人体模型确定不同性别、种族和体型对心肺复苏教育的重要性。
- DOI:
10.1016/j.cpcardiol.2022.101159 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:4.2
- 作者:
K. Liblik;Jin Byun;Andrew Lloyd;J. Farina;L. Burgos;Daniel Howes;A. Baranchuk - 通讯作者:
A. Baranchuk
Undergraduate Research Programs Can Also Be Faculty Development Programs
本科生研究项目也可以是教师发展项目
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Melissa A Harrington;T. Smolinski;Andrew Lloyd;Mazen Shahin - 通讯作者:
Mazen Shahin
Future Directions in Valuing Benefits for Estimating QALYs: Is Time Up for the EQ-5D?
评估 QALY 效益的未来方向:EQ-5D 的时间到了吗?
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:3.5
- 作者:
J. Brazier;D. Rowen;Andrew Lloyd;M. Karimi - 通讯作者:
M. Karimi
Andrew Lloyd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Lloyd', 18)}}的其他基金
Collaborative Research: Imaging the 3D Viscosity Structure of the Antarctic Mantle with Existing Observations from GPS and Relative Sea Level
合作研究:利用 GPS 和相对海平面的现有观测结果对南极地幔的 3D 粘度结构进行成像
- 批准号:
2142592 - 财政年份:2022
- 资助金额:
$ 158.92万 - 项目类别:
Standard Grant
Targeted Infusion Project: Expanding Educational Cyber-Infrastructure at Delaware State University
有针对性的注入项目:扩大特拉华州立大学的教育网络基础设施
- 批准号:
1434978 - 财政年份:2014
- 资助金额:
$ 158.92万 - 项目类别:
Standard Grant
Delaware Scholarships for Undergraduates in Science, Technology, Engineering, and Mathematics (DSU-STEM)
特拉华州科学、技术、工程和数学本科生奖学金 (DSU-STEM)
- 批准号:
0965893 - 财政年份:2010
- 资助金额:
$ 158.92万 - 项目类别:
Standard Grant
相似国自然基金
植物乳杆菌胞外多糖基于NLRP3/GSDMD通路抑制ETEC不耐热肠毒素诱导猪小肠上皮细胞焦亡机制的研究
- 批准号:32373095
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CARK3磷酸化转录因子IUNR调控植物铁内稳态平衡的分子机制分析
- 批准号:32370273
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
单核细胞膜型Tim-3胞外域脱落在肾移植受者慢性移植物失功中的效应机制研究
- 批准号:82302604
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三种木兰科稀有药用植物与其内生菌中新颖萜类聚合物的发现及抗白血病活性研究
- 批准号:82373752
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
降水变化下荒漠草原优势种和邻近植物的竞争与共存机制
- 批准号:32360423
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Miscanthus AI- Plant selection and breeding for Net Zero
芒草 AI - 净零植物选择和育种
- 批准号:
EP/Y005430/1 - 财政年份:2023
- 资助金额:
$ 158.92万 - 项目类别:
Research Grant
Plant selection and breeding for Net Zero
净零植物选择和育种
- 批准号:
EP/Y005694/1 - 财政年份:2023
- 资助金额:
$ 158.92万 - 项目类别:
Research Grant
Plant seed enlarge breeding by utilizing the plant new tissue "The final form of the phloem end".
利用植物新组织“韧皮部末端的最终形态”进行植物种子扩大育种。
- 批准号:
22K21366 - 财政年份:2023
- 资助金额:
$ 158.92万 - 项目类别:
Fund for the Promotion of Joint International Research (Home-Returning Researcher Development Research)
Plant selection and breeding for net zero
净零植物选择和育种
- 批准号:
EP/Y00504X/1 - 财政年份:2023
- 资助金额:
$ 158.92万 - 项目类别:
Research Grant
Using citizen science to explore plant breeding and investigate food-chain transparency for novel breeding methods
利用公民科学探索植物育种并研究新育种方法的食物链透明度
- 批准号:
BB/W009013/1 - 财政年份:2022
- 资助金额:
$ 158.92万 - 项目类别:
Research Grant