The role of neuregulin-1 signalling in modulating repair and functional recovery following spinal cord injury

神经调节蛋白-1信号传导在调节脊髓损伤后修复和功能恢复中的作用

基本信息

  • 批准号:
    MR/P012418/1
  • 负责人:
  • 金额:
    $ 74.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

A spinal cord injury (SCI) can happen to anyone at any time, changing lives in an instant and resulting in severe and permanent loss of basic bodily functions and a lifetime of disability. The social and economic impact of SCI is immense and ever increasing, since 40,000 people are currently living with SCI in the UK, 1200 more sustain an injury each year and healthcare costs are among the highest of any medical condition. There are currently no regenerative or disease-modifying therapies for SCI patients, with current treatments focused predominantly on rehabilitation, symptomatic relief and supportive care. SCI therefore poses a major unmet need and a high priority for medical research. Despite the severe neurological consequences of SCI, in nearly all cases there is some degree of functional improvement after the initial trauma and, at the cellular level, there is some attempt by the spinal cord to mount a regenerative response, which includes nerve fibre sprouting, myelin repair and neurogenesis. Although this repair is limited, there is clearly an endogenous capacity for repair in the spinal cord. If we can understand the basic biology underlying these regenerative processes, we may then be able to modulate and enhance them and improve functional outcome after SCI.Recent work from our labs discovered that an important developmental factor, known as neuregulin-1 (Nrg1), plays a key role in spontaneous myelin repair and recovery of limb function after traumatic SCI. Mice that lacked the Nrg1 gene had a severe demyelinating pathology, impaired conduction of spinal nerve fibres and poorer performance in a number of tasks requiring sensorimotor coordination and locomotor function. We now wish to understand the molecular mechanisms that govern these processes and investigate the potential for modulating and enhancing Nrg1 signalling in order to improve functional outcome after SCI. Our preliminary data suggests that Nrg1 signalling acts as a molecular switch that enables stem cells resident within the spinal cord to transform into reparative myelinating cells, and that different sub-types of Nrg1 are important for different aspects of spontaneous repair and function after SCI. We aim to determine how Nrg1 mediates repair, what cells are responsive to Nrg1 signalling, and whether increasing specific sub-types of Nrg1 can improve and accelerate myelin repair, restore nerve conduction and modulate sensory feedback between the muscles and the spinal cord, all of which are processes important for recovery of function after SCI.This research will not only benefit our basic understanding of the biology of the injured spinal cord and the molecular signals that mediate functional repair but may ultimately lead to new targeted regenerative therapies for improving functional outcome after SCI. If we can improve myelin repair and the ability to conduct nerve impulses along the spinal cord, and restore muscle-spinal cord communication, this could have a huge impact on functional ability, for example by enhancing grip and sensation in the fingers. Regaining hand and finger function is a top priority for tetraplegic patients since it would enable them to perform daily tasks that we take for granted (such as feeding, dressing, washing), giving increased independence and improved quality of life. Thus, in the long term we hope that the ultimate beneficiaries of this work will be spinal injured patients. However, this work not only has relevance to SCI but also has wider implications for other central nervous system disorders, such as multiple sclerosis, where improving myelin repair and regenerative processes is a paramount goal.
脊髓损伤(SCI)可能随时发生在任何人身上,瞬间改变生活,导致基本身体功能的严重和永久性丧失以及终生残疾。 SCI 的社会和经济影响是巨大的,而且还在不断增加,因为英国目前有 40,000 人患有 SCI,每年还有 1200 人受伤,而且医疗费用是所有医疗状况中最高的。目前尚无针对 SCI 患者的再生或疾病缓解疗法,目前的治疗主要集中于康复、症状缓解和支持治疗。因此,SCI 为医学研究提出了一个未满足的重大需求和高度优先事项。尽管 SCI 会造成严重的神经系统后果,但几乎所有病例在最初的创伤后都会出现一定程度的功能改善,并且在细胞水平上,脊髓会尝试进行再生反应,其中包括神经纤维发芽,髓磷脂修复和神经发生。尽管这种修复是有限的,但脊髓显然具有内源性修复能力。如果我们能够了解这些再生过程背后的基本生物学原理,我们也许能够调节和增强它们,并改善 SCI 后的功能结果。我们实验室的最新工作发现,一种重要的发育因子,称为神经调节蛋白-1 (Nrg1),在创伤性 SCI 后自发髓磷脂修复和肢体功能恢复中发挥关键作用。缺乏Nrg1基因的小鼠患有严重的脱髓鞘病变,脊髓神经纤维的传导受损,并且在许多需要感觉运动协调和运动功能的任务中表现较差。我们现在希望了解控制这些过程的分子机制,并研究调节和增强 Nrg1 信号传导的潜力,以改善 SCI 后的功能结果。我们的初步数据表明,Nrg1 信号传导充当分子开关,使脊髓内的干细胞能够转化为修复性髓鞘细胞,并且 Nrg1 的不同亚型对于 SCI 后自发修复和功能的不同方面都很重要。我们的目标是确定 Nrg1 如何介导修复,哪些细胞对 Nrg1 信号有反应,以及增加 Nrg1 的特定亚型是否可以改善和加速髓磷脂修复,恢复神经传导并调节肌肉和脊髓之间的感觉反馈,所有这些这是 SCI 后功能恢复的重要过程。这项研究不仅有利于我们对受损脊髓的生物学和介导功能修复的分子信号的基本了解,而且可能最终导致新的靶向再生疗法,以改善脊髓损伤SCI 后的功能结果。如果我们能够改善髓磷脂修复和沿着脊髓传导神经冲动的能力,并恢复肌肉与脊髓的沟通,这可能会对功能能力产生巨大影响,例如增强手指的抓力和感觉。恢复手和手指功能是四肢瘫痪患者的首要任务,因为这将使他们能够执行我们认为理所当然的日常任务(例如喂食、穿衣、洗澡),从而增强独立性并提高生活质量。因此,从长远来看,我们希望这项工作的最终受益者是脊柱损伤患者。然而,这项工作不仅与 SCI 相关,而且对其他中枢神经系统疾病也有更广泛的影响,例如多发性硬化症,改善髓磷脂修复和再生过程是其中的首要目标。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inhibiting an inhibitor: a decoy to recover dexterity after spinal cord injury.
抑制抑制剂:脊髓损伤后恢复灵活性的诱饵。
  • DOI:
    http://dx.10.1093/brain/awaa175
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bradbury EJ
  • 通讯作者:
    Bradbury EJ
ErbB receptor signaling directly controls oligodendrocyte progenitor cell transformation and spontaneous remyelination after spinal cord injury.
ErbB 受体信号传导直接控制脊髓损伤后少突胶质祖细胞转化和自发髓鞘再生。
  • DOI:
    http://dx.10.1002/glia.23586
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Bartus K
  • 通讯作者:
    Bartus K
Neuromodulation in the restoration of function after spinal cord injury.
脊髓损伤后功能恢复中的神经调节。
  • DOI:
    http://dx.10.1016/s1474-4422(18)30287-4
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James ND
  • 通讯作者:
    James ND
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth Bradbury其他文献

Creating the conditions for integrated systems of care: Learning from two large-scale approaches to changing thinking, practice and behaviour in Scotland and North West England
为综合护理系统创造条件:从苏格兰和英格兰西北部改变思维、实践和行为的两种大规模方法中学习
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heather M. Shearer;Elizabeth Bradbury;June Wylie
  • 通讯作者:
    June Wylie
Large‐Scale Improvement Initiatives in Healthcare: A Scan of the Literature
医疗保健领域的大规模改进举措:文献扫描
  • DOI:
    10.1111/j.1945-1474.2011.00164.x
  • 发表时间:
    2013-02-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Perla;Elizabeth Bradbury;Christina Gunther
  • 通讯作者:
    Christina Gunther

Elizabeth Bradbury的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elizabeth Bradbury', 18)}}的其他基金

Technology-driven combinatorial therapy to rewire the spinal cord after injury (ReWire)
技术驱动的组合疗法可在损伤后重新连接脊髓 (ReWire)
  • 批准号:
    EP/X031497/1
  • 财政年份:
    2023
  • 资助金额:
    $ 74.06万
  • 项目类别:
    Research Grant
Pharmacological inhibition or genetic deletion of a neurotoxin found abundantly at sites of spinal cord injury will neuroprotect and improve outcome.
对脊髓损伤部位大量发现的神经毒素进行药理学抑制或基因删除将起到神经保护作用并改善预后。
  • 批准号:
    MR/X003752/1
  • 财政年份:
    2023
  • 资助金额:
    $ 74.06万
  • 项目类别:
    Research Grant
Regulating neuroplasticity to restore upper limb and hand function after spinal cord injury
调节神经可塑性以恢复脊髓损伤后的上肢和手部功能
  • 批准号:
    MR/V002783/1
  • 财政年份:
    2021
  • 资助金额:
    $ 74.06万
  • 项目类别:
    Research Grant
Identification of novel bioactive mediators of tissue scarring, inflammation and extracellular matrix remodeling after spinal cord injury
脊髓损伤后组织疤痕、炎症和细胞外基质重塑的新型生物活性介质的鉴定
  • 批准号:
    MR/R005532/1
  • 财政年份:
    2017
  • 资助金额:
    $ 74.06万
  • 项目类别:
    Research Grant
Acute and chronic spinal cord injury: novel studies of synaptogenesis, plasticity and mechanisms of repair
急性和慢性脊髓损伤:突触发生、可塑性和修复机制的新研究
  • 批准号:
    G1002055/1
  • 财政年份:
    2011
  • 资助金额:
    $ 74.06万
  • 项目类别:
    Fellowship

相似国自然基金

基于“鞘脂代谢调节-TRPV1蛋白表达-神经递质抑制”的贯叶连翘抗偏头痛物质基础及作用机制研究
  • 批准号:
    82260755
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
核孔蛋白Seh1调节神经发生的功能与作用机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高蛋白饮食中体重调节因子的鉴定和神经生物学机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
DNMT3L通过调节蛋白甲基化和去泛素化影响唐氏综合征胎儿期神经祖细胞增殖与分化的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Exploring the function and shedding of a potential C. elegans Neuregulin
探索潜在的线虫神经调节蛋白的功能和脱落
  • 批准号:
    10629996
  • 财政年份:
    2023
  • 资助金额:
    $ 74.06万
  • 项目类别:
Regulation of the tumor microenvironment by DNA damage repair proteins
DNA损伤修复蛋白调节肿瘤微环境
  • 批准号:
    10737565
  • 财政年份:
    2023
  • 资助金额:
    $ 74.06万
  • 项目类别:
Plasticizing the cortex to enhance stroke recovery
塑化皮质以促进中风恢复
  • 批准号:
    10819906
  • 财政年份:
    2023
  • 资助金额:
    $ 74.06万
  • 项目类别:
Neuregulin/Alpha7nAChR Signaling, the GABAergic Switch and Neurodevelopmental Risk: Mechanisms of Gestational Choline Supplementation.
神经调节蛋白/Alpha7nAChR 信号传导、GABA 能开关和神经发育风险:妊娠期胆碱补充的机制。
  • 批准号:
    10711908
  • 财政年份:
    2023
  • 资助金额:
    $ 74.06万
  • 项目类别:
Pre-Existing Atopy and Respiratory Viral Infections
已有的特应性和呼吸道病毒感染
  • 批准号:
    10658075
  • 财政年份:
    2023
  • 资助金额:
    $ 74.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了