Regulating neuroplasticity to restore upper limb and hand function after spinal cord injury

调节神经可塑性以恢复脊髓损伤后的上肢和手部功能

基本信息

  • 批准号:
    MR/V002783/1
  • 负责人:
  • 金额:
    $ 92.52万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

A spinal cord injury (SCI) can have devastating consequences, often resulting in a lifetime of disability and dependence. Most human SCIs occur in the neck (cervical) region and cause disability in the upper limbs and hands. Losing the ability to reach, grip, hold and pick up objects can severely limit independence, quality of life, participation in society and sense of self. There is currently no cure for SCI and no adequate therapies, therefore new regenerative therapies are urgently needed, particularly those that enable recovery of hand function.The enzyme therapy chondroitinase is a promising experimental treatment that enables new growth and connectivity (termed "neuroplasticity") by breaking down growth-blocking molecules in SCI scar tissue. There is now overwhelming pre-clinical evidence that treatment with chondroitinase enables recovery of lost function after SCI, demonstrated by numerous laboratories and in multiple species, including mouse, rat, cat, canine and primate. Chondroitinase is therefore a leading candidate for clinical development. The Bradbury lab and their collaborators have made many advances in optimizing and evaluating this therapy as a potential treatment option for SCI, recently developing an advanced gene therapy approach where a single injection of a viral vector containing a humanized version of the chondroitinase gene enables cells of the spinal cord to produce the enzyme directly into the injured tissue. In a further advance, the gene therapy has been engineered to contain an on/off switch which can be controlled by antibiotic administration (taking the antibiotic orally switches the gene on, and withdrawal switches the gene off), adding an important safety element plus a tool to examine when, and for how long, to turn the gene on to maximise the potential for recovery. With this approach we recently demonstrated recovery of reach and grasp ability in rats with cervical level contusion injuries when they were treated for 8 weeks with the gene continuously on. This exciting data, plus a recent study from our collaborator showing improved hand dexterity with chondroitinase gene therapy in hemi-contused monkeys, provides compelling evidence for testing this therapy in humans, and we are preparing for a first in man study. However, in order to improve the chances of clinical success, we first need to answer critical questions that remain: is recovery maintained after gene switch off? What are the long-term effects of gene therapy? How can we optimally apply this therapy with rehabilitative training to maximise the potential for recovery? Can we enable neuroplasticity and recover hand function in long term (chronic) SCI? What motor pathways are responsible for the recovery and are the targets for chondroitinase the same in rats and higher species? To address these, we will use rat cervical contusion injuries to mimic the most common type of human SCI; we will focus on recovery of hand function since this is the highest rated patient priority for improving independence and quality of life; we will apply targeted training to maximise the potential for recovery and for clinical relevance, since any new therapy for SCI will be applied alongside rehabilitative training in the clinic; we will apply this treatment to chronic SCI, to evaluate its potential application for the majority of patients who are living with long-established injuries. Finally, we will use gene silencing to determine the motor pathways that mediate recovery of hand function and we will carry out a cross-species tissue analysis comparison (rat, primate, human) to determine the optimal pattern of treatment for application in man. This project will provide essential information required to translate a promising regenerative therapy into a clinical treatment for restoring hand function in man and has the potential to improve the lives of millions of patients living with lifelong disability as a result of SCI.
脊髓损伤 (SCI) 可能会造成毁灭性后果,常常导致终生残疾和依赖。大多数人类脊髓损伤发生在颈部,导致上肢和手部残疾。失去伸手、抓握、握住和拾起物体的能力会严重限制独立性、生活质量、社会参与和自我意识。目前尚无治愈 SCI 的方法,也没有足够的治疗方法,因此迫切需要新的再生疗法,特别是那些能够恢复手部功能的疗法。酶疗法软骨素酶是一种有前途的实验性治疗方法,可以实现新的生长和连接(称为“神经可塑性”)通过分解 SCI 疤痕组织中的生长阻断分子。现在有压倒性的临床前证据表明,软骨素酶治疗可以恢复 SCI 后失去的功能,这已被众多实验室和多个物种(包括小鼠、大鼠、猫、犬和灵长类动物)证实。因此,软骨素酶是临床开发的主要候选者。布拉德伯里实验室及其合作者在优化和评估这种疗法作为 SCI 的潜在治疗选择方面取得了许多进展,最近开发了一种先进的基因治疗方法,其中单次注射含有人源化软骨素酶基因的病毒载体可使细胞脊髓产生的酶直接进入受伤的组织。更进一步的是,基因疗法被设计成包含一个可以通过抗生素给药来控制的开关(口服抗生素会打开基因,停药会关闭基因),添加了一个重要的安全元素和用于检查何时以及多长时间开启基因以最大限度地发挥恢复潜力的工具。通过这种方法,我们最近证明,当连续开启该基因治疗 8 周时,颈椎挫伤的大鼠的触及和抓握能力得到恢复。这一令人兴奋的数据,再加上我们合作者最近的一项研究显示,软骨素酶基因疗法可以改善半挫伤猴子的手部灵活性,为在人体中测试这种疗法提供了令人信服的证据,我们正在为首次人体研究做准备。然而,为了提高临床成功的机会,我们首先需要回答仍然存在的关键问题:基因关闭后恢复还能维持吗?基因治疗的长期影响是什么?我们如何才能最佳地应用这种疗法与康复训练,以最大限度地发挥康复潜力?我们能否在长期(慢性)脊髓损伤中实现神经可塑性并恢复手部功能?哪些运动通路负责恢​​复?软骨素酶的目标在大鼠和高等物种中是否相同?为了解决这些问题,我们将使用大鼠颈椎挫伤来模拟最常见的人类 SCI 类型;我们将重点关注手部功能的恢复,因为这是提高患者独立性和生活质量的最高优先事项;我们将应用有针对性的培训,以最大限度地发挥康复潜力和临床相关性,因为任何新的 SCI 疗法都将与临床康复培训一起应用;我们将把这种治疗方法应用于慢性 SCI,以评估其对大多数患有长期损伤的患者的潜在应用。最后,我们将利用基因沉默来确定介导手部功能恢复的运动途径,并将进行跨物种组织分析比较(大鼠、灵长类动物、人类)以确定适用于人类的最佳治疗模式。该项目将提供将有前途的再生疗法转化为恢复人类手部功能的临床治疗所需的基本信息,并有可能改善数百万因 SCI 导致终身残疾的患者的生活。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enrichment of human embryonic stem cell-derived V3 interneurons using an Nkx2-2 gene-specific reporter.
使用 Nkx2-2 基因特异性报告基因富集人类胚胎干细胞衍生的 V3 中间神经元。
  • DOI:
    http://dx.10.1038/s41598-023-29165-z
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Berzanskyte I
  • 通讯作者:
    Berzanskyte I
Peripherally delivered Adeno-associated viral vectors for spinal cord injury repair.
外周递送腺相关病毒载体用于脊髓损伤修复。
  • DOI:
    http://dx.10.1016/j.expneurol.2021.113945
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Sydney
  • 通讯作者:
    Sydney
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth Bradbury其他文献

Creating the conditions for integrated systems of care: Learning from two large-scale approaches to changing thinking, practice and behaviour in Scotland and North West England
为综合护理系统创造条件:从苏格兰和英格兰西北部改变思维、实践和行为的两种大规模方法中学习
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heather M. Shearer;Elizabeth Bradbury;June Wylie
  • 通讯作者:
    June Wylie
Large‐Scale Improvement Initiatives in Healthcare: A Scan of the Literature
医疗保健领域的大规模改进举措:文献扫描
  • DOI:
    10.1111/j.1945-1474.2011.00164.x
  • 发表时间:
    2013-02-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Perla;Elizabeth Bradbury;Christina Gunther
  • 通讯作者:
    Christina Gunther

Elizabeth Bradbury的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elizabeth Bradbury', 18)}}的其他基金

Technology-driven combinatorial therapy to rewire the spinal cord after injury (ReWire)
技术驱动的组合疗法可在损伤后重新连接脊髓 (ReWire)
  • 批准号:
    EP/X031497/1
  • 财政年份:
    2023
  • 资助金额:
    $ 92.52万
  • 项目类别:
    Research Grant
Pharmacological inhibition or genetic deletion of a neurotoxin found abundantly at sites of spinal cord injury will neuroprotect and improve outcome.
对脊髓损伤部位大量发现的神经毒素进行药理学抑制或基因删除将起到神经保护作用并改善预后。
  • 批准号:
    MR/X003752/1
  • 财政年份:
    2023
  • 资助金额:
    $ 92.52万
  • 项目类别:
    Research Grant
The role of neuregulin-1 signalling in modulating repair and functional recovery following spinal cord injury
神经调节蛋白-1信号传导在调节脊髓损伤后修复和功能恢复中的作用
  • 批准号:
    MR/P012418/1
  • 财政年份:
    2017
  • 资助金额:
    $ 92.52万
  • 项目类别:
    Research Grant
Identification of novel bioactive mediators of tissue scarring, inflammation and extracellular matrix remodeling after spinal cord injury
脊髓损伤后组织疤痕、炎症和细胞外基质重塑的新型生物活性介质的鉴定
  • 批准号:
    MR/R005532/1
  • 财政年份:
    2017
  • 资助金额:
    $ 92.52万
  • 项目类别:
    Research Grant
Acute and chronic spinal cord injury: novel studies of synaptogenesis, plasticity and mechanisms of repair
急性和慢性脊髓损伤:突触发生、可塑性和修复机制的新研究
  • 批准号:
    G1002055/1
  • 财政年份:
    2011
  • 资助金额:
    $ 92.52万
  • 项目类别:
    Fellowship

相似国自然基金

神经损伤后瘫痪手运动功能恢复中皮质代表区定向“跃迁”的向导机制和脑可塑性研究
  • 批准号:
    81871836
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
健侧脑区在强制性运动促进脑缺血后患肢功能恢复中的作用机制
  • 批准号:
    81572225
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
成对关联刺激对脑梗死大鼠功能恢复的影响及其神经可塑性机制研究
  • 批准号:
    81272156
  • 批准年份:
    2012
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
Gsdd45b调节脑梗死后皮质脊髓束可塑性及其机制研究
  • 批准号:
    81271306
  • 批准年份:
    2012
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
抑郁发生及恢复过程中小鼠前额叶皮层神经回路可塑性的活体研究
  • 批准号:
    91132726
  • 批准年份:
    2011
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Synergies between physical exercise, brain stimulation, and neuroplasticity
体育锻炼、大脑刺激和神经可塑性之间的协同作用
  • 批准号:
    DE240101348
  • 财政年份:
    2024
  • 资助金额:
    $ 92.52万
  • 项目类别:
    Discovery Early Career Researcher Award
Parity differentially influences neuroplasticity and neuroinflammation at middle age depending on APOEe4 genotype
胎次对中年神经可塑性和神经炎症的影响存在差异,具体取决于 APOEe4 基因型
  • 批准号:
    495235
  • 财政年份:
    2023
  • 资助金额:
    $ 92.52万
  • 项目类别:
Dynamic functional network connectivity and neuroplasticity in post-stroke aphasia
中风后失语症的动态功能网络连接和神经可塑性
  • 批准号:
    10826465
  • 财政年份:
    2023
  • 资助金额:
    $ 92.52万
  • 项目类别:
Targeted Neuroplasticity via vagus nerve stimulation to improve urinary dysfunction after spinal cord injury
通过迷走神经刺激的靶向神经可塑性改善脊髓损伤后的泌尿功能障碍
  • 批准号:
    10785466
  • 财政年份:
    2023
  • 资助金额:
    $ 92.52万
  • 项目类别:
A Gesture-Powered Software Platform of Neurologic Music Therapy Games and Puzzles: To Stimulate Neuroplasticity and Prolong Functional Independence in Individuals Diagnosed with Alzheimer's Disease
神经音乐治疗游戏和谜题的手势驱动软件平台:刺激阿尔茨海默病患者的神经可塑性并延长功能独立性
  • 批准号:
    10611831
  • 财政年份:
    2023
  • 资助金额:
    $ 92.52万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了