SHAIC1: Towards Scalable Human-AI Coordination from First Principles

SHAIC1:从第一原则迈向可扩展的人类与人工智能协调

基本信息

  • 批准号:
    EP/Y028481/1
  • 负责人:
  • 金额:
    $ 242.77万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The goal of this proposal is to develop artificial intelligence (AI) agents, that can support and collaborate with humans in complex, real-world settings. These include, for example, industrial or service robots that can work in teams with humans and self-driving cars that interact smoothly with other traffic participants in mixed-autonomy settings. A fundamental issue is that, unlike the scalable solutions for competitive settings, current approaches for cooperative ones rely on human data and are thus limited in their scalability. Unfortunately, scaling compute to remove the need for human data is challenging in these settings. Without the well-defined objective present in zero-sum settings, it requires finding one of the few solutions that is human-compatible in a pool that also contains combinatorially many human-incompatible ones.My hypothesis is that humans have a well-defined concept of a 'good coordination solution' and to a great extent rely on this concept to solve coordination problems, i.e. when they have to work with others but cannot pre-agree on a strategy. Generally speaking, a good solution in such scenarios is one that is simple, symmetric, and therefore easy to adapt to. To move towards a formalisation and implementation of this intuitive idea, I will show how general purpose coordination policies can be efficiently discovered in complex settings using iteratively learned state-abstractions which implement simplicity and symmetry constraints.I will then robustify these policies to human sub-optimality using novel algorithms that gradually relax the constraints via online adaptation or small amounts of real-world human data.This project will result in new methods that can scale to complex human-AI coordination problems beyond the reach of the current state of the art. It will also develop a new theory that sets the scene for fundamental progress on human-AI coordination and unlocks crucial application areas, such autonomous industrial robots.
该提案的目标是开发人工智能 (AI) 代理,能够在复杂的现实环境中支持人类并与之协作。例如,其中包括可以与人类团队合作的工业或服务机器人,以及可以在混合自主环境中与其他交通参与者顺利互动的自动驾驶汽车。一个基本问题是,与竞争环境的可扩展解决方案不同,当前的合作解决方案依赖于人类数据,因此其可扩展性受到限制。不幸的是,在这些环境中,扩展计算以消除对人类数据的需求是一项挑战。如果零和环境中没有明确定义的目标,则需要在一个池中找到与人类兼容的少数解决方案之一,该池中还包含许多与人类不兼容的组合。我的假设是,人类有一个明确定义的概念“良好的协调解决方案”的概念,并在很大程度上依靠这个概念来解决协调问题,即当他们必须与他人合作但无法预先就策略达成一致时。一般来说,在这种情况下,一个好的解决方案是简单、对称、因此易于适应的解决方案。为了实现这一直观想法的形式化和实施,我将展示如何使用迭代学习的状态抽象在复杂的环境中有效地发现通用协调策略,这些状态抽象实现了简单性和对称性约束。然后我将增强这些策略以适应人类的需求。使用新颖的算法来实现最优性,这些算法通过在线适应或少量的现实世界人类数据逐渐放松约束。该项目将产生新的方法,可以扩展到超出当前技术水平的复杂的人类与人工智能协调问题。它还将开发一种新理论,为人类与人工智能协调的根本进展奠定基础,并解锁关键应用领域,例如自主工业机器人。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jakob Foerster其他文献

Rethinking Out-of-Distribution Detection for Reinforcement Learning: Advancing Methods for Evaluation and Detection
重新思考强化学习的分布外检测:改进评估和检测方法
Computing Low-Entropy Couplings for Large-Support Distributions
计算大支撑分布的低熵耦合
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samuel Sokota;Dylan Sam;C. S. D. Witt;Spencer Compton;Jakob Foerster;J. Z. Kolter
  • 通讯作者:
    J. Z. Kolter
Near to Mid-term Risks and Opportunities of Open Source Generative AI
开源生成人工智能的近期风险和机遇
  • DOI:
    10.48550/arxiv.2404.17047
  • 发表时间:
    2024-04-25
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Francisco Eiras;Aleks;ar Petrov;ar;Bertie Vidgen;C. S. D. Witt;Fabio Pizzati;Katherine Elkins;Supratik Mukhopadhyay;Adel Bibi;Botos Csaba;Fabro Steibel;Fazl Barez;Genevieve Smith;G. Guadagni;Jon Chun;Jordi Cabot;Joseph Marvin Imperial;J. Nolazco;Lori L;ay;ay;Matthew Jackson;Paul Rottger;P. Torr;Trevor Darrell;Y. Lee;Jakob Foerster
  • 通讯作者:
    Jakob Foerster
Select to Perfect: Imitating desired behavior from large multi-agent data
选择完美:从大型多智能体数据中模仿所需的行为
  • DOI:
    10.48550/arxiv.2405.03735
  • 发表时间:
    2024-05-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tim Franzmeyer;Edith Elkind;P. Torr;Jakob Foerster;Joao F. Henriques
  • 通讯作者:
    Joao F. Henriques
Risks and Opportunities of Open-Source Generative AI
开源生成人工智能的风险和机遇
  • DOI:
    10.48550/arxiv.2405.08597
  • 发表时间:
    2024-05-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Francisco Eiras;Aleks;er Petrov;er;Bertie Vidgen;Christian Schroeder;Fabio Pizzati;Katherine Elkins;Supratik Mukhopadhyay;Adel Bibi;Aaron Purewal;Csaba Botos;Fabro Steibel;Fazel Keshtkar;Fazl Barez;Genevieve Smith;G. Guadagni;Jon Chun;Jordi Cabot;Joseph Marvin Imperial;J. A. Nolazco;Lori L;ay;ay;Matthew Jackson;Phillip H. S. Torr;Trevor Darrell;Y. Lee;Jakob Foerster
  • 通讯作者:
    Jakob Foerster

Jakob Foerster的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
  • 批准号:
    82300777
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Fbxw7缺失促进EGFR突变肺腺癌向肺鳞癌转分化的功能和机制研究
  • 批准号:
    82303039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
深大水库热分层驱动下微塑料垂向迁移特征及其动态影响机制
  • 批准号:
    42377263
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于颅内外同步静息态脑电与多尺度有向脑网络的致痫区定位研究
  • 批准号:
    82371453
  • 批准年份:
    2023
  • 资助金额:
    65 万元
  • 项目类别:
    面上项目

相似海外基金

LYRA : A Modular path towards Industrialised and Scalable Quantum Networking
LYRA:通往工业化和可扩展量子网络的模块化道路
  • 批准号:
    10085813
  • 财政年份:
    2023
  • 资助金额:
    $ 242.77万
  • 项目类别:
    Small Business Research Initiative
Collaborative Research: CISE-MSI: DP: RI: Towards Scalable, Resilient and Robust Foraging with Heterogeneous Robot Swarms
合作研究:CISE-MSI:DP:RI:利用异构机器人群实现可扩展、有弹性和稳健的觅食
  • 批准号:
    2318683
  • 财政年份:
    2023
  • 资助金额:
    $ 242.77万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: RI: Towards Scalable, Resilient and Robust Foraging with Heterogeneous Robot Swarms
合作研究:CISE-MSI:DP:RI:利用异构机器人群实现可扩展、有弹性和稳健的觅食
  • 批准号:
    2318682
  • 财政年份:
    2023
  • 资助金额:
    $ 242.77万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Robust, Scalable, and Resilient Radio Fingerprinting
协作研究:SaTC:核心:小型:迈向稳健、可扩展和有弹性的无线电指纹识别
  • 批准号:
    2225161
  • 财政年份:
    2023
  • 资助金额:
    $ 242.77万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 242.77万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了