The development of new instruments based on miniaturised room temperature MASERs: MASER in a Shoebox
基于小型化室温 MASER 的新仪器的开发:鞋盒中的 MASER
基本信息
- 批准号:EP/Y00471X/1
- 负责人:
- 金额:$ 60.55万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The aim of this proposal is to develop equipment that can take advantage of the discovery of MASER action at room temperature. The MASER (Microwave Amplified Stimulated Emission of Radiation) was in fact discovered before the LASER (Light Amplified Stimulated Emission of Radiation) but required cryogenic cooling and magnetic fields. The associated infrastructure needed to operate the MASER meant that it was used in very few specialist applications such as deep space exploration. Maser research then produced lasers and around the same time, semiconductor amplifiers were developed, which brought further development to a halt. However, they were developed into very useful devices for timekeeping, radio astronomy and deep space communication (Ruby masers) because of their unparalleled low electronic noise as well as a very narrow linewidth of oscillation. The discovery of masing at room temperature is a step change that allows us to consider new instrumentation that would transform low-noise amplifiers, sensors, and clocks. If we can amplify tiny signals and increase signal to noise then we can use them as very low noise amplifiers - these are found in all manner of electronic equipment. The gamechanger is the noise floor of our maser when measured at room temperature. Our ambition therefore is to extend the astounding sensitivity and low noise of existing masers to room-temperature applications, there are two relevant comparators - existing non-ambient technologies and existing room-temperature technologies. For applications as low-noise amplifiers, a key figure of merit is the so-called "noise temperature" which should be as low as possible and for conventional electronic devices is approximately their thermodynamic temperature. The pentacene maser has an estimated noise temperature of 140 milliKelvin and the diamond maser has an estimated noise temperature of less than 2 Kelvin with theory suggesting the noise temperature could be lowered to around 300 milliKelvin, all at room temperature. Our noise floor is 1-2 orders of magnitude lower than the best semiconductor (high electron mobility transistors) available today. So for example we would get better images in a MRI machine or clearer communications. Already we can foresee additional applications for the re-engineered maser that include more sensitive medical scanners; chemical sensors for remotely detecting explosives; advanced quantum computer components; and better radio astronomy devices for potentially detecting life on other planets.Our next step is to provide a miniaturised benchtop demonstrator instrument capable of addressing these applications. This is important both to allow a transition from just studying room-temperature masers into actually using room-temperature masers, and as a step towards widespread use of these devices in other research labs and in industry. It is our experience and indeed that of colleagues engaging with industrial partners, that it is essential that we provide a proof of principle instrument.
该提案的目的是开发能够利用室温下 MASER 作用的设备。 MASER(微波放大受激辐射)实际上是在激光(光放大受激辐射)之前发现的,但需要低温冷却和磁场。操作 MASER 所需的相关基础设施意味着它只用于极少数专业应用,例如深空探索。随后,微波激射研究产生了激光器,大约在同一时间,半导体放大器被开发出来,这使得进一步的发展陷入停滞。然而,由于其无与伦比的低电子噪声以及非常窄的振荡线宽,它们被开发成为用于计时、射电天文学和深空通信(红宝石微波激射器)的非常有用的设备。室温下磁化的发现是一个重大改变,它使我们能够考虑改造低噪声放大器、传感器和时钟的新仪器。如果我们可以放大微小信号并提高信噪比,那么我们就可以将它们用作非常低噪声的放大器 - 这些放大器存在于各种电子设备中。游戏规则的改变者是我们在室温下测量的微波激射器的本底噪声。因此,我们的目标是将现有微波激射器的惊人灵敏度和低噪声扩展到室温应用,有两个相关的比较器 - 现有的非环境技术和现有的室温技术。对于低噪声放大器的应用,一个关键的品质因数是所谓的“噪声温度”,它应该尽可能低,而对于传统电子设备来说,其关键品质因数大约是它们的热力学温度。并五苯脉泽的估计噪声温度为 140 毫开尔文,而金刚石脉泽器的估计噪声温度低于 2 开尔文,理论上表明噪声温度可以降低到 300 毫开尔文左右,所有这些都在室温下进行。我们的本底噪声比当今最好的半导体(高电子迁移率晶体管)低 1-2 个数量级。例如,我们可以在 MRI 机器中获得更好的图像或更清晰的通信。我们已经可以预见重新设计的微波激射器的其他应用,包括更灵敏的医疗扫描仪;用于远程检测爆炸物的化学传感器;先进的量子计算机组件;以及更好的射电天文学设备,有可能探测其他行星上的生命。我们的下一步是提供能够满足这些应用需求的小型台式演示仪器。这对于从仅仅研究室温微波激射器过渡到实际使用室温微波激射器,以及在其他研究实验室和工业中广泛使用这些设备而言非常重要。根据我们的经验以及与工业合作伙伴打交道的同事的经验,我们有必要提供原则证明工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Alford其他文献
Portable diamond maser with reduced magnetic field through orientation
通过定向减少磁场的便携式金刚石脉塞
- DOI:
10.21468/scipostphyscore.6.4.065 - 发表时间:
2024-04-07 - 期刊:
- 影响因子:3.6
- 作者:
Wern Ng;Yongqiang Wen;Neil Alford;D. Arroo - 通讯作者:
D. Arroo
Neil Alford的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Alford', 18)}}的其他基金
Sir Henry Royce Institute - Imperial Build and Equipment
亨利·莱斯爵士研究所 - 帝国建筑和设备
- 批准号:
EP/P02520X/1 - 财政年份:2016
- 资助金额:
$ 60.55万 - 项目类别:
Research Grant
Probing surface-molecule interactions of perovskite catalysts
探究钙钛矿催化剂的表面分子相互作用
- 批准号:
EP/L023687/1 - 财政年份:2014
- 资助金额:
$ 60.55万 - 项目类别:
Research Grant
Room Temperature, Earth's Field MASER
室温、地球场 MASER
- 批准号:
EP/K011987/1 - 财政年份:2013
- 资助金额:
$ 60.55万 - 项目类别:
Research Grant
Nano-Scale SQUID Magnetometry of Oxide Heterointerfaces
氧化物异质界面的纳米级 SQUID 磁力测量
- 批准号:
EP/H012117/1 - 财政年份:2010
- 资助金额:
$ 60.55万 - 项目类别:
Research Grant
Ferroelectrics for Nanoelectronics (FERN)
纳米电子学铁电体 (FERN)
- 批准号:
EP/H023003/1 - 财政年份:2010
- 资助金额:
$ 60.55万 - 项目类别:
Research Grant
Platform Renewal Proposal: MULTIFUNCTIONAL OXIDES MATERIALS TO DEVICES
平台更新提案:多功能氧化物材料到设备
- 批准号:
EP/F067828/1 - 财政年份:2009
- 资助金额:
$ 60.55万 - 项目类别:
Research Grant
Nanostructured Functional Materials for Energy Efficient Refrigeration, Energy Harvesting and Production of Hydrogen from Water.
用于节能制冷、能量收集和从水中生产氢气的纳米结构功能材料。
- 批准号:
EP/G060940/1 - 财政年份:2009
- 资助金额:
$ 60.55万 - 项目类别:
Research Grant
Feasibility study: Ultra-High Q-factor Aperiodic Reflector Resonators
可行性研究:超高品质因数非周期反射谐振器
- 批准号:
EP/F035853/1 - 财政年份:2008
- 资助金额:
$ 60.55万 - 项目类别:
Research Grant
Ultra violet radiation controlled non-linear dielectrics
紫外线辐射控制非线性电介质
- 批准号:
EP/E044840/1 - 财政年份:2008
- 资助金额:
$ 60.55万 - 项目类别:
Research Grant
相似国自然基金
飞机复合材料无损检测的毫米波近场合成孔径全息成像新仪器研制
- 批准号:62027803
- 批准年份:2020
- 资助金额:573 万元
- 项目类别:国家重大科研仪器研制项目
基于参数模型的一米新真空太阳望远镜偏振定标方法研究
- 批准号:11773069
- 批准年份:2017
- 资助金额:69.0 万元
- 项目类别:面上项目
基于新原理的便携式、多功能荧光分析仪的研制
- 批准号:20927001
- 批准年份:2009
- 资助金额:150.0 万元
- 项目类别:专项基金项目
脉动消元新原理提高海洋原位光学检测仪器长期稳定性的研究
- 批准号:40906050
- 批准年份:2009
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
光致电化学分析新仪器的研制
- 批准号:20827005
- 批准年份:2008
- 资助金额:110.0 万元
- 项目类别:专项基金项目
相似海外基金
Chip-Scale Intraoperative Optical Navigation with Immunotargeted Upconverting Nanoparticles
使用免疫靶向上转换纳米颗粒的芯片级术中光学导航
- 批准号:
10743477 - 财政年份:2023
- 资助金额:
$ 60.55万 - 项目类别:
A Big Data Approach Toward the Development of New Quantitative Autism Severity Scores from Existing Instruments
利用现有仪器开发新的定量自闭症严重程度评分的大数据方法
- 批准号:
10438954 - 财政年份:2022
- 资助金额:
$ 60.55万 - 项目类别:
Vitreoretinal Surgery via Robotic Microsurgical System with Image Guidance, Force Feedback, Virtual Fixture, and Augmented Reality
通过具有图像引导、力反馈、虚拟夹具和增强现实功能的机器人显微手术系统进行玻璃体视网膜手术
- 批准号:
10582637 - 财政年份:2019
- 资助金额:
$ 60.55万 - 项目类别:
Vitreoretinal Surgery via Robotic Microsurgical System with Image Guidance, Force Feedback, Virtual Fixture, and Augmented Reality
通过具有图像引导、力反馈、虚拟夹具和增强现实功能的机器人显微手术系统进行玻璃体视网膜手术
- 批准号:
10331767 - 财政年份:2019
- 资助金额:
$ 60.55万 - 项目类别:
Vitreoretinal Surgery via Robotic Microsurgical System with Image Guidance, Force Feedback, Virtual Fixture, and Augmented Reality
通过具有图像引导、力反馈、虚拟夹具和增强现实功能的机器人显微手术系统进行玻璃体视网膜手术
- 批准号:
10090474 - 财政年份:2019
- 资助金额:
$ 60.55万 - 项目类别: