Metal-Organic Framework-Based Gas Sensors: Structural Engineering for Early Diabetes Diagnosis and Monitoring (SEEDDM)

基于金属有机框架的气体传感器:早期糖尿病诊断和监测的结构工程 (SEEDDM)

基本信息

  • 批准号:
    EP/Y002318/1
  • 负责人:
  • 金额:
    $ 21.15万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Diabetes is a tremendous health problem with 537 million cases worldwide in 2021 and contributing to millions of deaths each year. The annual global health expenditure on diabetes is expected to reach GBP 876 billion by 2045. Spectroscopic technologies (e.g. gas chromatography and mass spectrometry), alternative to invasive glucose blood testing, still dominate the non-invasive breath analysis market for diabetes screening and monitoring, however, these technologies are relatively expensive, slow, complex and require specialist skills to use and to interpret results. In comparison to those techniques, nanomaterials-based sensors (e.g. metal oxide semiconductor (MOS)) provide advantages such as simple, sensitivity, small size, ease of operation, and minimum maintenance requirements. However, most of the MOS-based sensors require high operating temperatures (200-500 oC) resulting in high energy consumption. Furthermore, MOSs only allow limited discrimination between different gases (e.g. alcohols and ketones) which cannot be determined without specialised spectroscopic techniques. Therefore, the development on the nanomaterials have been motivated. Metal-organic framework (MOF)-based materials are favourable due to their tunable pore sizes and shapes, high surface area, and nanopore structures, which allow easy diffusion of guest molecules into the highly-ordered frameworks, but the problems such as (mostly) their nonconducting characteristic, poor stability, unclarified and complicated gas sensing mechanism need to be solved, thus the innovation of structures for MOF-based electrodes calls for further exploration. The SEEDDM project will bring together internationally recognised researchers in heterojunction-based materials architectures and modelling from UM (Kuala Lumpur, Malaysia) and the expertise of UoE (Edinburgh, UK) in the development of porous nanomaterials to work on the conductive monolith metal-organic framework (MOF) coupled with suitable hydrogel electrolytes for breath (volatile organic compounds) VOC sensing in the applications of early diabetes diagnosis and monitoring. Our joint approach aims to solve the research challenges (synergy effects of conductive monolith MOF electrodes and hydrogel electrolytes to work at ultra-low power and room temperature environment) for the purpose of innovating inexpensive, portable, and high-performance devices. Diabetes biomarkers that could be detectable in breath are VOCs, which include acetone, isoprene, carbon monoxide, ammonia, and alkanes. Through collaboration with UM, state-of-the-art materials and device characterisation techniques will be used to understand the underlying mechanisms which will advance our ability to develop improved clinical decision, making personalised therapies combined increased levels of self-monitoring and diagnostics. The successful of this research will potentially ease the pressure of NHS on early diabetes screening and monitoring.After successfully fulfilling SEEDDM, we aim to innovate a portable, non-invasive breath analyser that exhibits high sensitivity (e.g. 0.05-3 ppm acetone detection at room temperature), high selectivity of target gases (e.g. ketone, alcohol), fast T90 response time (the time consumed when the gas detector changes from reading 0 to 90% of the full scale gas concentration) less than 60s, and stable cycle of more than 1,000 redox cycles (>85% humidity). Medical monitoring devices and wearable health technology have seen rapid growth over the past years (£17.5 billion in 2021 to £162.6 billion by 2030, a CAGR of 28.1%). Therefore, SEEDDM will not only help advance the quality of healthcare research and innovative efforts in the UK and Malaysia, but also strengthen and stimulate the development of new technologies in the healthcare industry.
糖尿病是一个巨大的健康问题,到 2021 年,全球将有 5.37 亿例糖尿病,每年导致数百万人死亡。到 2045 年,全球每年用于糖尿病的医疗支出预计将达到 8760 亿英镑。光谱技术(例如气相色谱法和质谱法),作为侵入式血糖检测的替代方案,仍然主导着用于糖尿病筛查和监测的无创呼吸分析市场,但是,这些技术相对昂贵、缓慢、复杂,并且需要专业技能才能使用与这些技术相比,基于纳米材料的传感器(例如金属氧化物半导体(MOS))具有简单、灵敏、尺寸小、易于操作和最低维护要求等优点。基于需要高工作温度(200-500 oC),从而导致高能耗。此外,MOS 传感器只能对不同气体(例如醇和酮)进行有限的区分,如果没有专门的光谱技术就无法确定。因此,基于金属有机骨架(MOF)的材料由于其可调节的孔径和形状、高表面积和纳米孔结构而受到青睐,这使得客体分子可以轻松扩散到高度层中。有序框架,但其非导电特性、稳定性差、气体传感机制不明确且复杂等问题需要解决,因此基于MOF的电极结构的创新需要进一步探索。该项目将汇集来自密歇根大学(马来西亚吉隆坡)基于异质结的材料结构和建模方面国际公认的研究人员以及英国爱丁堡大学(英国爱丁堡)在多孔纳米材料开发方面的专业知识,以研究导电整体金属有机框架(MOF)与适合呼吸(挥发性有机化合物)VOC 传感的水凝胶电解质在早期糖尿病诊断和监测应用中的应用我们的联合方法旨在解决研究挑战(协同作用)。导电整体式 MOF 电极和水凝胶电解质在超低功耗和室温环境下工作的影响),旨在创新廉价、便携式和高性能的设备,可在呼吸中检测到 VOC,其中包括丙酮。 、异戊二烯、一氧化碳、氨和烷烃,我们将利用最先进的材料和器件表征技术来了解潜在的机制,从而提高我们的能力。开发改进的临床决策,使个性化治疗与提高自我监测和诊断水平相结合。这项研究的成功将有可能减轻 NHS 在早期糖尿病筛查和监测方面的压力。在成功实现 SEEDDM 后,我们的目标是创新一种便携式、非侵入式呼吸分析仪,具有高灵敏度(例如室温下检测 0.05-3 ppm 丙酮)、目标气体(例如酮、酒精)高选择性、快速 T90 响应时间(气体检测仪从读取满量程气体浓度的0到90%时所消耗的时间)小于60s,并且稳定循环超过1000次氧化还原循环(>85%湿度)。医疗监测设备和可穿戴健康技术已具备。过去几年增长迅速(2021 年为 175 亿英镑,到 2030 年将达到 1626 亿英镑,复合年增长率为 28.1%),因此,SEEDDM 不会。不仅有助于提高英国和马来西亚的医疗保健研究和创新努力的质量,而且还加强和刺激医疗保健行业新技术的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sharel Peisan E其他文献

Sharel Peisan E的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

选择性分离水产品中全氟辛酸的金属有机框架的设计制备及吸附机制研究
  • 批准号:
    32302234
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
金属有机框架中金属离子的化学试剂还原探索
  • 批准号:
    22365025
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
铁系金属有机框架材料的活性位结构调控与双效氧电催化机制研究
  • 批准号:
    22309180
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
儿茶酚基导电金属有机框架膜的设计构筑及其对CO2的吸附分离研究
  • 批准号:
    22305211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
贵金属离子配位导向的异金属有机框架催化剂制备及性能调控
  • 批准号:
    22371225
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Metal-organic framework thin films for electrocatalysis: A combined ex situ and in situ investigation
用于电催化的金属有机骨架薄膜:异位和原位联合研究
  • 批准号:
    EP/Y002911/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Research Grant
Transforming Supercapacitors by using Metal-Organic Framework Electrodes
使用金属有机框架电极改造超级电容器
  • 批准号:
    EP/X042693/1
  • 财政年份:
    2023
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Research Grant
Glassy metal-organic framework membranes for CO2 separation and conversion
用于二氧化碳分离和转化的玻璃状金属有机骨架膜
  • 批准号:
    DE230100147
  • 财政年份:
    2023
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Discovery Early Career Researcher Award
Metal organic framework-based membrane for nanoplastics removal
用于去除纳米塑料的金属有机骨架膜
  • 批准号:
    DE230101306
  • 财政年份:
    2023
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Discovery Early Career Researcher Award
Selective C(sp3)–H Functionalization Enabled by Metal-Organic Framework Catalysis
金属有机框架催化实现选择性 C(sp3)–H 官能化
  • 批准号:
    10679785
  • 财政年份:
    2023
  • 资助金额:
    $ 21.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了