Metal-organic framework thin films for electrocatalysis: A combined ex situ and in situ investigation
用于电催化的金属有机骨架薄膜:异位和原位联合研究
基本信息
- 批准号:EP/Y002911/1
- 负责人:
- 金额:$ 21.14万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern life on the planet is sustained by constant supply of energy, over 80% of which is currently provided by fossil-fuel-based carbon sources (coal, oil and gas). Climate change crisis, combined with dwindling North Sea fuel resources and volatility in the global fossil-fuel market mean there is a pressing need for securement of sustainable energy sources. In this context, electrochemical technologies are becoming increasingly important due to their prominent role in energy conversion, storage, and chemical industries. With renewable electricity being a key strategic component of UK Government's energy policy, coupled with cost reductions of renewable electricity in recent years, electrochemical technologies will play a key role in enabling decarbonisation. Alongside batteries, electrocatalysis is becoming a well-established direction in the domain of energy technologies (e.g., electrolysers and fuel cells) as well as fuels and chemical manufacturing. The applications include: (i) electrochemical conversion of CO2 to produce fuels and chemicals (e.g., formic acid, syngas, ethanol), facilitating carbon capture and utilisation pathways (CCU), (ii) oxidation of low-value waste chemicals (e.g., glycerol from biodiesel industry or ethylene glycol from PET digestion) to generate high-value products used by chemical industries. The primary benefit of such electricity powered processes is their contribution towards reducing the CO2 emission and transitioning to a sustainable society. However, one of the key challenges in making electrocatalytic technologies economically viable is developing inexpensive catalysts that can be used at the electrodes to drive the chemical reactions efficiently. In this context, use of porous materials as a catalyst is appealing because they have large surface area with well-defined pores and channels with integrated catalytic sites. Metal-organic frameworks (MOFs) are such a class of microporous materials with permanent porosity, and their structure can be designed with exceptional degree of control. While these crystalline materials have enormous potential for applications in gas sorption, catalysis, energy storage, light harvesting etc., their use in electrochemical systems has remained problematic due to low conductivity, and thus, many questions remain open in the field.In this proposal, we aim to gain fundamental insight on how these materials operate as electrocatalysts. The overall idea is that the lessons learned from this project will feed into the design principle of next generation of materials. Due to the structural complexity of the MOFs, 'visualising' their structure under operating condition requires a wide range of technical tools including spectroscopy, X-ray diffraction and imaging. For this purpose, we will team up with international researchers to uncover how structural aspects of the materials contribute to the catalytic activity and whether the materials undergo structural reconstruction during catalysis.
地球上的现代生命靠持续的能源供应来维持,目前其中 80% 以上是由基于化石燃料的碳源(煤炭、石油和天然气)提供的。气候变化危机,加上北海燃料资源的减少以及全球化石燃料市场的波动,意味着迫切需要确保可持续能源的安全。在这种背景下,电化学技术由于其在能源转换、存储和化学工业中的突出作用而变得越来越重要。随着可再生电力成为英国政府能源政策的关键战略组成部分,加上近年来可再生电力成本的下降,电化学技术将在实现脱碳方面发挥关键作用。除了电池之外,电催化正在成为能源技术(例如电解槽和燃料电池)以及燃料和化学品制造领域的一个成熟方向。这些应用包括:(i) CO2 的电化学转化以生产燃料和化学品(例如甲酸、合成气、乙醇),促进碳捕获和利用途径 (CCU),(ii) 低价值废化学品的氧化(例如,来自生物柴油工业的甘油或来自 PET 消化的乙二醇)以生产化学工业使用的高价值产品。这种电力驱动过程的主要好处是它们对减少二氧化碳排放和向可持续社会过渡的贡献。然而,使电催化技术经济可行的关键挑战之一是开发可在电极上使用的廉价催化剂,以有效驱动化学反应。在这种情况下,使用多孔材料作为催化剂很有吸引力,因为它们具有大的表面积,具有明确的孔和通道以及集成的催化位点。金属有机框架(MOF)是一类具有永久孔隙的微孔材料,其结构可以通过特殊程度的控制进行设计。虽然这些晶体材料在气体吸附、催化、能量存储、光捕获等方面具有巨大的应用潜力,但由于电导率低,它们在电化学系统中的使用仍然存在问题,因此,该领域仍有许多问题悬而未决。 ,我们的目标是获得有关这些材料如何作为电催化剂发挥作用的基本见解。总体想法是,从该项目中吸取的经验教训将纳入下一代材料的设计原则。由于 MOF 结构的复杂性,在操作条件下“可视化”其结构需要多种技术工具,包括光谱学、X 射线衍射和成像。为此,我们将与国际研究人员合作,揭示材料的结构方面如何影响催化活性以及材料在催化过程中是否进行结构重建。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Souvik Roy其他文献
Viral inhibitory potential of hyoscyamine in Japanese encephalitis virus–infected embryonated chicken eggs involving multiple signaling pathways
天仙子胺对日本脑炎病毒感染的鸡胚鸡蛋的病毒抑制潜力涉及多种信号通路
- DOI:
10.1007/s00705-023-05883-7 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:2.7
- 作者:
Arghyadeep Bhattacharjee;Rahul Naga;M. Saha;Srabani Karmakar;Abhishek Pal;Souvik Roy - 通讯作者:
Souvik Roy
Asynchronous cellular automata and pattern classification
异步元胞自动机和模式分类
- DOI:
10.1002/cplx.21749 - 发表时间:
2015-08-19 - 期刊:
- 影响因子:0
- 作者:
Biswanath Sethi;Souvik Roy;Sukanta Das - 通讯作者:
Sukanta Das
On the parameter estimation of Box‐Cox transformation cure model
Box—Cox变换固化模型的参数估计
- DOI:
10.1002/sim.9739 - 发表时间:
2023-04-05 - 期刊:
- 影响因子:2
- 作者:
S. Pal;Souvik Roy - 通讯作者:
Souvik Roy
Sparse Reconstruction of Log-Conductivity in Current Density Impedance Tomography
电流密度阻抗断层扫描中对数电导率的稀疏重建
- DOI:
10.1007/s10851-019-00929-5 - 发表时间:
2019-03-27 - 期刊:
- 影响因子:2
- 作者:
Madhu Gupta;Rohit Kumar Mishra;Souvik Roy - 通讯作者:
Souvik Roy
Implementation in multidimensional dichotomous domains
多维二分域中的实现
- DOI:
10.3982/te1239 - 发表时间:
2013-05-01 - 期刊:
- 影响因子:1.7
- 作者:
D. Mishra;Souvik Roy - 通讯作者:
Souvik Roy
Souvik Roy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Souvik Roy', 18)}}的其他基金
A New Computational Framework for Superior Image Reconstruction in Limited Data Quantitative Photoacoustic Tomography
有限数据定量光声断层扫描中卓越图像重建的新计算框架
- 批准号:
2309491 - 财政年份:2023
- 资助金额:
$ 21.14万 - 项目类别:
Standard Grant
LEAPS-MPS: Stochastic Frameworks for Control of a Class of Aberrant Signaling Pathways in Esophageal Cancer
LEAPS-MPS:控制食道癌中一类异常信号通路的随机框架
- 批准号:
2212938 - 财政年份:2022
- 资助金额:
$ 21.14万 - 项目类别:
Standard Grant
相似国自然基金
选择性分离水产品中全氟辛酸的金属有机框架的设计制备及吸附机制研究
- 批准号:32302234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机框架中金属离子的化学试剂还原探索
- 批准号:22365025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
铁系金属有机框架材料的活性位结构调控与双效氧电催化机制研究
- 批准号:22309180
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
儿茶酚基导电金属有机框架膜的设计构筑及其对CO2的吸附分离研究
- 批准号:22305211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
贵金属离子配位导向的异金属有机框架催化剂制备及性能调控
- 批准号:22371225
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Metal-Organic Framework-Based Gas Sensors: Structural Engineering for Early Diabetes Diagnosis and Monitoring (SEEDDM)
基于金属有机框架的气体传感器:早期糖尿病诊断和监测的结构工程 (SEEDDM)
- 批准号:
EP/Y002318/1 - 财政年份:2024
- 资助金额:
$ 21.14万 - 项目类别:
Research Grant
Transforming Supercapacitors by using Metal-Organic Framework Electrodes
使用金属有机框架电极改造超级电容器
- 批准号:
EP/X042693/1 - 财政年份:2023
- 资助金额:
$ 21.14万 - 项目类别:
Research Grant
Glassy metal-organic framework membranes for CO2 separation and conversion
用于二氧化碳分离和转化的玻璃状金属有机骨架膜
- 批准号:
DE230100147 - 财政年份:2023
- 资助金额:
$ 21.14万 - 项目类别:
Discovery Early Career Researcher Award
Metal organic framework-based membrane for nanoplastics removal
用于去除纳米塑料的金属有机骨架膜
- 批准号:
DE230101306 - 财政年份:2023
- 资助金额:
$ 21.14万 - 项目类别:
Discovery Early Career Researcher Award
Selective C(sp3)–H Functionalization Enabled by Metal-Organic Framework Catalysis
金属有机框架催化实现选择性 C(sp3)–H 官能化
- 批准号:
10679785 - 财政年份:2023
- 资助金额:
$ 21.14万 - 项目类别: