EDIBLES: Environmentally Driven Body-Scale Electromagnetic Co-Sensing
食用:环境驱动的人体规模电磁协同感应
基本信息
- 批准号:EP/Y002008/1
- 负责人:
- 金额:$ 20.93万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The ability to pervasively monitor the activities, vital signs, and biomarkers of healthy and recovering individuals has been investigated for decades, and could revolutionise the healthcare sector enabling a new generation of predictive diagnostics. Electronic devices, the heart of such sensors, however, represent a growing environmental emergency. Traditional electronic fabrication processes are extremely power and water hungry and are constantly depleting a finite reserve of critical raw materials. Moreover, at their end-of-life, waste electrical and electronic equipment (WEEE) is generated and typically shipped to overseas disassembly facilities which are predominantly manual, risking both the environment and the local communities; the UK is currently the world's 2nd largest producer of WEEE/capita. Unless an alternative wearable sensing paradigm emerges, the sensorisation of everyday garments will add to this exponential growth in WEEE, and the electronics industry will inevitably be stunted by its inability to find alternative sustainable materials.The vision of this collaborative research is to develop an Environmentally Driven Body-Scale Electromagnetic Co-Sensing (EDIBLES) methodology that enables the next generation of wearables to drastically reduce the environmental impact of its cradle-to-grave life cycle. We will develop a methodology for fusing passive, biodegradable, and chip-free wireless electromagnetic sensors with recyclable radio frequency identification (RFID) electronics. Printed on flexible and biodegradable substrates such as eco fabrics and paper, we will demonstrate the first biodegradable microwave components with performance matching that of metal nanoparticle inks. Our fabrication process will be roll-to-roll-friendly, scalable to very large (>1 square metre) areas, and will not require cleanrooms or costly infrastructure. We will demonstrate that printed organic RF structures can match the performance of the metal-based non-biodegradable and non-biocompatible counterparts up to 110 GHz and develop sensing structures operating at sub-THz frequencies (700 to 1,100 GHz) based on polymers and 2D materials. The project is culminated by a novel demonstrator, the EDIBLES garment. The EDIBLES garment, combined with our new read-out mechanism, will be capable of wirelessly measuring, at a metres-range, human motion, vital signs, and environmental conditions, for multiple subjects in a multi-user environment. The EDIBLES garment will be a zero-WEEE demo with components that are either biodegradable or recyclable, with no requirement for special disassembly procedures. The demo will be used to engage industry users, promote sustainable electronics design through an open-source tool, and in a programme of public engagement and STEM outreach activities across the three international institutions, showing the full potential of sustainable wireless technologies.EDIBLES reaches beyond developing the technology to championing and advocating its use to the research community and relevant industry stakeholders. As our methodology will be co-created with two research leaders in wireless sensing, Prof. Gaetano Marrocco from the University of Rome Tor Vergata and Prof. Mohammad Zarifi from the University of British Columbia, the team will champion the sustainability-driven design of wireless sensors, extending the identified guidelines to the activities of their group. We will advocate this through workshops at leading international symposia and by hosting an international sustainable wireless technologies meeting in Glasgow, bringing interdisciplinary experts from across the UK to grow the engagement with our international partnership.
几十年来,人们对普遍监测健康和康复个体的活动、生命体征和生物标志物的能力进行了研究,这可能会彻底改变医疗保健行业,从而实现新一代的预测诊断。然而,作为此类传感器的核心的电子设备代表着日益严重的环境紧急情况。传统的电子制造工艺非常耗电和耗水,并且不断耗尽有限的关键原材料储备。此外,在报废时,会产生废弃电气和电子设备(WEEE),并通常被运往海外的拆卸设施,这些设施主要是手动的,对环境和当地社区都构成风险;英国目前是世界第二大人均废弃电子电气设备生产国。除非出现替代的可穿戴传感范式,否则日常服装的传感将加剧 WEEE 的指数增长,而电子行业将不可避免地因无法找到替代的可持续材料而受到阻碍。这项合作研究的愿景是开发一种环境友好型材料。驱动人体尺度电磁协同感应 (EDIBLES) 方法使下一代可穿戴设备能够大幅减少其从摇篮到坟墓的生命周期对环境的影响。我们将开发一种方法,将无源、可生物降解、无芯片的无线电磁传感器与可回收的射频识别 (RFID) 电子设备融合在一起。我们将在生态织物和纸张等柔性和可生物降解的基材上进行印刷,展示首款可生物降解的微波组件,其性能可与金属纳米粒子墨水相匹配。我们的制造工艺将是卷对卷友好的,可扩展到非常大(>1平方米)的区域,并且不需要洁净室或昂贵的基础设施。我们将证明印刷有机射频结构可以与高达 110 GHz 的基于金属的不可生物降解和非生物相容性对应物的性能相匹配,并开发基于聚合物和 2D 的在亚太赫兹频率(700 至 1,100 GHz)下运行的传感结构材料。该项目的高潮是一款新颖的演示品,即 EDIBLES 服装。 EDIBLES 服装与我们新的读出机制相结合,将能够在多用户环境中以米为单位无线测量多个受试者的人体运动、生命体征和环境条件。 EDIBLES 服装将是零 WEEE 演示,其组件可生物降解或可回收,无需特殊的拆卸程序。该演示将用于吸引行业用户,通过开源工具促进可持续电子设计,并用于三个国际机构的公众参与和 STEM 推广活动计划,展示可持续无线技术的全部潜力。EDIBLES 超越开发技术以支持和倡导研究界和相关行业利益相关者的使用。由于我们的方法将与无线传感领域的两位研究领导者(罗马 Tor Vergata 大学的 Gaetano Marrocco 教授和不列颠哥伦比亚大学的 Mohammad Zarifi 教授)共同创建,因此该团队将倡导可持续驱动的无线传感设计传感器,将已确定的指南扩展到其小组的活动中。我们将通过在领先的国际研讨会上举办研讨会以及在格拉斯哥举办国际可持续无线技术会议来倡导这一点,召集来自英国各地的跨学科专家来加强我们与国际伙伴关系的接触。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mahmoud Wagih其他文献
Microwave to mmWave Wireless Power Transfer: An Overview of the Design Challenges with a Focus on UK-Based R&D
微波到毫米波无线功率传输:设计挑战概述,重点关注英国 R
- DOI:
10.23919/eucap60739.2024.10501269 - 发表时间:
2024-03-17 - 期刊:
- 影响因子:0
- 作者:
Mahmoud Wagih;Chaoyun Song - 通讯作者:
Chaoyun Song
E-Textile Breathing Sensor Using Fully Textile Wearable Antennas "2279
使用全纺织可穿戴天线的电子纺织呼吸传感器“2279
- DOI:
10.1109/tmtt.2022.3192532 - 发表时间:
2022 - 期刊:
- 影响因子:4.3
- 作者:
Mahmoud Wagih;Obaid Malik;A. Weddell;S. Beeby - 通讯作者:
S. Beeby
Flexible 2.4 GHz Node for Body Area Networks With a Compact High-Gain Planar Antenna
具有紧凑型高增益平面天线的用于体域网的灵活 2.4 GHz 节点
- DOI:
10.5258/soton/d0702 - 发表时间:
2018-11-05 - 期刊:
- 影响因子:4.2
- 作者:
Mahmoud Wagih;Yang Wei;S. Beeby - 通讯作者:
S. Beeby
Textile-based Radio Frequency Energy Harvesting and Storage using Ultra-Compact Rectennas with High Effective-to-Physical Area Ratio
使用具有高有效物理面积比的超紧凑矩形天线进行基于纺织品的射频能量收集和存储
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Mahmoud Wagih;N. Hillier;A. Weddell;S. Beeby - 通讯作者:
S. Beeby
Millimeter-Wave Power Harvesting: A Review
毫米波能量采集:回顾
- DOI:
10.1109/ojap.2020.3028220 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:4
- 作者:
Mahmoud Wagih;A. Weddell;S. Beeby - 通讯作者:
S. Beeby
Mahmoud Wagih的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
污染光环还是污染避风港:境内外机构投资者对我国企业环保行为影响的比较研究
- 批准号:72302113
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境监管数字化转型与企业环保应对研究:来自设立污染源在线监控系统的视角
- 批准号:72302111
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合城市多模态环保数据的交通流预测关键技术研究
- 批准号:62361026
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于多元IRMOFs复合纳米纤维吸附体系的环保绝缘气体有害分解产物消除方法研究
- 批准号:52377156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
企业环保不确定性与绿色金融加速器效应:理论机制与实证分析
- 批准号:72303019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Identifying mechanisms of environmentally driven long-term crack growth in brittle rocks
识别环境驱动的脆性岩石长期裂纹扩展的机制
- 批准号:
RGPIN-2018-05918 - 财政年份:2022
- 资助金额:
$ 20.93万 - 项目类别:
Discovery Grants Program - Individual
Environmentally-responsive, dual-stage microparticle drug depots with healing-driven growth factor delivery for craniofacial bone regeneration
环境响应型双级微粒药物库,具有愈合驱动的生长因子输送,用于颅面骨再生
- 批准号:
10657767 - 财政年份:2022
- 资助金额:
$ 20.93万 - 项目类别:
Environmentally-responsive, dual-stage microparticle drug depots with healing-driven growth factor delivery for craniofacial bone regeneration
环境响应型双级微粒药物库,具有愈合驱动的生长因子输送,用于颅面骨再生
- 批准号:
10527614 - 财政年份:2022
- 资助金额:
$ 20.93万 - 项目类别:
Identifying mechanisms of environmentally driven long-term crack growth in brittle rocks
识别环境驱动的脆性岩石长期裂纹扩展的机制
- 批准号:
RGPIN-2018-05918 - 财政年份:2022
- 资助金额:
$ 20.93万 - 项目类别:
Discovery Grants Program - Individual
Identifying mechanisms of environmentally driven long-term crack growth in brittle rocks
识别环境驱动的脆性岩石长期裂纹扩展的机制
- 批准号:
RGPIN-2018-05918 - 财政年份:2021
- 资助金额:
$ 20.93万 - 项目类别:
Discovery Grants Program - Individual