EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线
基本信息
- 批准号:EP/X039757/1
- 负责人:
- 金额:$ 97.78万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Quantum computers promise to be one of the main technical advances of the forthcoming decades. Several theoretical works predict that with such a system it will be possible to operate algorithms which are expected to have a large impact on many industries such as: chemical, pharmaceutical, automotive, and financial services. This is confirmed in the latest McKinsey & Company report (Dec. 2021) where they also demonstrate a global exponential increase in investment in this research area and predict a market value of surpassing $700 billion by 2035. One of the main limitations for the realization of a quantum computer concerns the difficulty of performing multiple qubit operations. In this project we will address this fundamental issue. Our main objective will be to explore and implement new type of mesoscopic effects to mediate long distance qubit operations. To achieve this goal, we will fabricate state of the art nanoscale devices on very low disorder strained germanium semiconductor material, invented by the PI, and epitaxially grown on a standard silicon substrate. There are several proposed platforms for realising qubits, the basic units of quantum information processing used to perform quantum computation. Broadly they can be based on ion-traps, superconducting junctions, photonic circuits and semiconductor quantum dots, each of which can reach different clock speed, gate fidelity and measurement errors, crosstalk and connectivity. While there has been great scientific progress and proof-of-concept demonstrations on all platforms, the main challenge to produce high-fidelity multi-qubit operations in scalable architectures remains. We aim to research extended-range exchange interactions in spin-qubits in semiconductor quantum dots and based on the discoveries, propose a proof-of-concept demonstration of 2D qubit architecture design that allows for quantum error cancellation and correction. Achieving qubit manipulation with extended-range coupling schemes in a CMOS-compatible 2D network is a major scientific and technological breakthrough that will set the foundations for a disruptive scalable architecture towards a quantum processor with billions of qubits on a tiny silicon chip. We aim to develop and implement alternatives for implementing long distance two-qubit coupling by developing a Ge Quantum Bus based on exchange interactions. This approach makes use of the high speed associated with exchange processes, without the requirement to arrange quantum dots in direct contact and is therefore attractive for current semiconductor devices fabrication techniques. We will introduce a new paradigm for spin-based quantum computing by experimentally demonstrating long-range coupling using positively charged holes. The architectures envisioned here exploit the unique spin properties of holes and address many, if not all, of the challenges that spin qubits are facing, and provide a new platform too.Importantly, this proposal combines efforts from academy and industry. On one hand, we take advantages of some major advances on the strained germanium material research and development made by Prof. Myronov, the experimental expertise in qubits characterisation of Prof. Smith and the theorical support of Prof. Bose. On the other hand, devices will be fabricated by Tyndall National Institute. In addition, the project will be heavily supported by 2 UK industrial partners and 8 international academic research groups, which will also contribute towards qubit devices operation, characterization and interpretation of novel results. These capabilities uniquely position this consortium internationally as being ideally placed to perform the proposed research.
量子计算机有望成为未来几十年的主要技术进步之一。一些理论著作预测,通过这样的系统,将有可能运行预计将对许多行业产生重大影响的算法,例如:化学、制药、汽车和金融服务。麦肯锡公司最新的报告(2021 年 12 月)证实了这一点,报告还展示了全球对该研究领域的投资呈指数级增长,并预测到 2035 年市场价值将超过 7000 亿美元。实现这一目标的主要限制之一量子计算机涉及执行多个量子位操作的难度。在这个项目中,我们将解决这个基本问题。我们的主要目标是探索和实施新型介观效应来调节长距离量子位操作。为了实现这一目标,我们将在 PI 发明的极低无序应变的锗半导体材料上制造最先进的纳米级器件,并在标准硅衬底上外延生长。人们提出了几种用于实现量子位的平台,量子位是用于执行量子计算的量子信息处理的基本单位。广义上,它们可以基于离子阱、超导结、光子电路和半导体量子点,每种都可以达到不同的时钟速度、门保真度和测量误差、串扰和连接性。尽管所有平台上都取得了巨大的科学进步和概念验证演示,但在可扩展架构中产生高保真多量子位操作的主要挑战仍然存在。我们的目标是研究半导体量子点中自旋量子位的扩展范围交换相互作用,并基于这些发现,提出了允许量子错误消除和校正的 2D 量子位架构设计的概念验证演示。在 CMOS 兼容的 2D 网络中通过扩展范围的耦合方案实现量子位操作是一项重大科学和技术突破,它将为颠覆性的可扩展架构奠定基础,从而实现在微型硅芯片上拥有数十亿量子位的量子处理器。我们的目标是通过开发基于交换相互作用的 Ge 量子总线来开发和实施实现长距离两个量子位耦合的替代方案。这种方法利用了与交换过程相关的高速,而不需要将量子点布置成直接接触,因此对于当前的半导体器件制造技术来说很有吸引力。我们将通过实验演示使用带正电的空穴的长程耦合,引入基于自旋的量子计算的新范例。这里设想的架构利用了空穴的独特自旋特性,解决了自旋量子位面临的许多(如果不是全部)挑战,并提供了一个新的平台。重要的是,该提案结合了学术界和工业界的努力。一方面,我们利用了Myronov教授在应变锗材料研发方面的一些重大进展、Smith教授在量子比特表征方面的实验专业知识以及Bose教授的理论支持。另一方面,设备将由廷德尔国家研究所制造。此外,该项目将得到2个英国工业合作伙伴和8个国际学术研究小组的大力支持,这也将为量子位设备的操作、表征和新结果的解释做出贡献。这些能力使该联盟在国际上具有独特的地位,成为开展拟议研究的理想条件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maksym Myronov其他文献
Maksym Myronov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
致病疫霉RxLR效应蛋白SFI7抑制马铃薯ETI免疫反应的分子机制研究
- 批准号:31800134
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
马铃薯致病疫霉RXLR效应蛋白SFI5在抑制番茄MTI早期反应中分子机制的研究
- 批准号:31701862
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
黔北农村留守学龄儿童意外伤害特征及SFI干预模式研究
- 批准号:81160350
- 批准年份:2011
- 资助金额:53.0 万元
- 项目类别:地区科学基金项目
Sfi1p蛋白在面包酵母SPB复制及SPB相关细胞过程中的作用研究
- 批准号:30771108
- 批准年份:2007
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
EPSRC-SFI Aluminium-Rich Nitride Electronics (ARNE)
EPSRC-SFI 富铝氮化物电子器件 (ARNE)
- 批准号:
EP/X036901/1 - 财政年份:2024
- 资助金额:
$ 97.78万 - 项目类别:
Research Grant
EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
- 批准号:
EP/V027395/2 - 财政年份:2024
- 资助金额:
$ 97.78万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
- 批准号:
EP/X040380/1 - 财政年份:2024
- 资助金额:
$ 97.78万 - 项目类别:
Research Grant
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
- 批准号:
EP/X040844/1 - 财政年份:2024
- 资助金额:
$ 97.78万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
- 批准号:
EP/X039889/1 - 财政年份:2024
- 资助金额:
$ 97.78万 - 项目类别:
Research Grant