Photonic Ultra-high-Q REsonators (PURE)

光子超高 Q 谐振器 (PURE)

基本信息

  • 批准号:
    EP/Z531169/1
  • 负责人:
  • 金额:
    $ 162.47万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Photonic ring resonators are miniature optical waveguiding structures that enable light to reach very high intensities in closed, circular paths. The loop structure and wave nature of light results in interference of the field such that the system becomes highly resonant with a repeated pattern. Each ring supports a comb of highly defined, specific frequencies of light, the spacing between which depends on the optical path length of the ring. In devices with a high-quality factor (high-Q), the optical circulating power can build up from a small milliwatt input signal to reach kilowatts of circulating power. The small, guided area of these devices results in immense power densities, permitting non-linear optical effects at remarkably low powers, despite the host material having low intrinsic non-linear properties. However, the achievable quality (Q) of such resonators has so far been limited by the losses caused by the absorption and scattering of light by the materials and structures used to fabricate the ring.The last 20 years have enabled significant progress in integrated photonics (optical circuits that guide and manipulate light analogous to the microchip in electronics), including the reduction of loss. Refined processes using CMOS-based cleanroom techniques have allowed researchers to improve optical transmission from 10% per metre to approximately 99.9% per metre in miniaturised optical chips. This has enabled the fabrication of optical microresonators with ultra-high-Q factors (over 100 million). These wafer-based devices form key components in advanced integrated photonic circuits for narrow linewidth lasers and frequency combs. The first generation of these devices has enabled compact systems for radar as well as for precision timing and navigation.Despite significant progress in the field, waveguide loss in state-of-the-art integrated photonics devices has plateaued at 100x higher losses than those readily achieved in standard telecoms optical fibre used for long-haul broadband internet. This limit is not fundamental but technological, and if fibre-like losses could also be achieved in an integrated photonics package, this would enable a new generation of applications and improvements in performance. These include compact, robust gyroscopes and low-power frequency combs for navigation and precision timing, ultra-narrow linewidth lasers (mHz to Hz), and advanced photonic components for telecommunication networks.This proposal seeks to combine the benefits of optical fibre fabrication approaches and material science developed over the past 50 years with the latest state-of-the-art CMOS fabrication techniques used for integrated optics. We aim to develop a manufacturing technique that will produce integrated ring resonator devices with the highest Q ever achieved. Using flame hydrolysis deposition and other standard optical fibre manufacturing techniques, we will develop ultra-pure glass layers to negate absorption losses. In particular, we will focus on high phosphorus and germanium doping, which we have shown can lead to dramatically better uniformity during our recent Caltech-Southampton DARPA seed project. We will use optical fibre manufacturing techniques to reduce loss from absorbed hydrogen and develop diffusion and reflow processes to remove waveguide interface and scattering losses.Our ambition is to develop the foundations for a scalable manufacturing process for the next generation of ultra-high-Q micro-ring resonators. These devices will enable a range of new technologies, including rugged miniature gyroscopes for navigation, combs for precision timing in data networks and optical sources for quantum technologies.
光子环谐振器是微型光学波导结构,使光能够在封闭的圆形路径中达到很高的强度。循环结构和光的性质会导致场的干扰,从而使系统具有重复的模式。每个环都支撑着高度定义的光频率的梳子,其间距取决于环的光路长度。在具有高质量因子(高Q)的设备中,光循环功率可以从小的毫米输入信号中积累,以达到循环功率的千瓦。这些设备的较小的指导区域导致巨大的功率密度,尽管宿主材料具有低内在的非线性特性,但允许在极低的功率下进行非线性光学效应。但是,到目前为止,此类谐振器的可实现质量(Q)受到用于制造环的材料和结构对光的吸收和散射造成的损失。过去20年来,可以在集成光子学方面取得了重大进展(光学电路指导和操纵对电子中的微芯片的光相似),包括电子学中的微芯片),包括损失的损失)。使用基于CMOS的洁净室技术的精制过程使研究人员可以在微型光学芯片中将光学传输从每米10%提高到每米的约99.9%。这使得具有超高Q因子(超过1亿个)的光学微孔子的制造。这些基于晶圆的设备在狭窄的线宽激光器和频率梳子的高级集成光子电路中形成了关键组件。这些设备的第一代已经实现了雷达的紧凑系统以及精确的时机和导航。尽管在该领域取得了重大进展,但最先进的集成光子设备的波导损失的损失却比用于长途宽带互联网的标准电信光纤易于实现的损失高于100倍。该限制不是基本的,而是技术,如果在集成的光子套件中也可以实现类似纤维的损失,这将使新一代应用程序和性能的改进能够得到改善。其中包括用于导航和精确时机的紧凑,健壮的陀螺仪和低功率频率梳子,超鼻涕线宽激光器(MHz至HZ)以及用于电信网络的高级光子组件。该建议旨在结合过去50年的光纤制造方法和材料科学的好处,该公司在过去的50年中使用了Optifation Farnequient for The-The-Artectiq for The-Arteques for-Artsiq for The-Arts CM。我们旨在开发一种制造技术,该技术将生产有史以来最高Q的集成环谐振设备。使用火焰水解沉积和其他标准光纤生产技术,我们将开发超纯玻璃层以消除吸收损失。特别是,我们将专注于高磷和锗掺杂,在我们最近的Caltech-Southampton DARPA种子项目中,我们所展示的可能会导致更好的均匀性。我们将使用光纤制造技术来减少吸收氢的损失,并发展扩散和回流过程,以消除波导界面和散射损失。我们的野心是为下一代超高的微环谐振器开发可扩展制造过程的基础。这些设备将启用一系列新技术,包括用于导航的坚固微型陀螺仪,用于数据网络中精确时机的梳子以及用于量子技术的光源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Gates其他文献

SiO<sub>2</sub>-SnO<sub>2</sub>:Er<sup>3+</sup> planar waveguides: Highly photorefractive glass-ceramics
  • DOI:
    10.1016/j.omx.2020.100056
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Thi Ngoc Lam Tran;Simone Berneschi;Cosimo Trono;Gualtiero Nunzi Conti;Lidia Zur;Cristina Armellini;Stefano Varas;Alessandro Carpentiero;Andrea Chiappini;Alessandro Chiasera;James Gates;Pier-John Sazio;Monica Bollani;Anna Lukowiak;Giancarlo C. Righini;Maurizio Ferrari
  • 通讯作者:
    Maurizio Ferrari

James Gates的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Gates', 18)}}的其他基金

Ultra-precision machining of optoelectronics and microsystems (UPROAR)
光电和微系统超精密加工(UPROAR)
  • 批准号:
    EP/W024772/1
  • 财政年份:
    2023
  • 资助金额:
    $ 162.47万
  • 项目类别:
    Research Grant
Dissemination of Information from Sixth International Congress of Mathematical Education
第六届国际数学教育大会信息发布
  • 批准号:
    8751432
  • 财政年份:
    1987
  • 资助金额:
    $ 162.47万
  • 项目类别:
    Standard Grant

相似国自然基金

高性能纤维混凝土构件抗爆的强度预测
  • 批准号:
    51708391
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
  • 批准号:
    31471690
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
超高频超宽带系统射频基带补偿理论与技术的研究
  • 批准号:
    61001097
  • 批准年份:
    2010
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
  • 批准号:
    60976066
  • 批准年份:
    2009
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目

相似海外基金

Ultra-high precision control of bosonic states in superconducting resonators with second-order nonlinear effects
具有二阶非线性效应的超导谐振器中玻色子态的超高精度控制
  • 批准号:
    22KJ0981
  • 财政年份:
    2023
  • 资助金额:
    $ 162.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Spiraling Into Control: Ultra High-Impedance Superconducting Resonators for Strongly-Coupled Spin-Cavity QED
螺旋进入控制:用于强耦合自旋腔 QED 的超高阻抗超导谐振器
  • 批准号:
    2210309
  • 财政年份:
    2022
  • 资助金额:
    $ 162.47万
  • 项目类别:
    Continuing Grant
Ultra-sensitive mass detection of ppt-level gas molecules with graphene nanomechanical resonators
利用石墨烯纳米机械谐振器对ppt级气体分子进行超灵敏质量检测
  • 批准号:
    20F20060
  • 财政年份:
    2020
  • 资助金额:
    $ 162.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Magneto-optical metamaterials consisting of antiferromagnetically coupled plasmon resonators for ultra-sensitive chiral molecular measurement systems
由反铁磁耦合等离子体谐振器组成的磁光超材料,用于超灵敏手性分子测量系统
  • 批准号:
    20K05375
  • 财政年份:
    2020
  • 资助金额:
    $ 162.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of ultra-stable cryogenic silicon optical resonators for laser frequency stabilization
开发用于激光频率稳定的超稳定低温硅光学谐振器
  • 批准号:
    279028307
  • 财政年份:
    2015
  • 资助金额:
    $ 162.47万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了