A general continuum theory of polycrystalline materials

多晶材料的一般连续介质理论

基本信息

  • 批准号:
    EP/X037800/1
  • 负责人:
  • 金额:
    $ 10.23万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Materials such as ice, rock salts and the Earth's mantle flow as highly viscous fluids over a long time. For example, the flow of a glacier is similar to the spread of golden syrup over a kitchen table. However, due to the crystal structure of ice and rock at small scales, they flow in interesting and unusual ways compared to normal fluids. Such flows are called polycrystalline. These flows are of critical importance: the flow of ice is the main contributor to sea-level rise and understanding the flow of the Earth's mantle is central to plate tectonics. Understanding the flow of salt in caverns is also important as there is an increasing need to use these caverns to store hydrogen as part of the net zero energy transition.Polycrystalline flows form a crystal structure on a small scale, which allows them to flow faster in certain directions, depending on the orientation of the crystals. Therefore, understanding and predicting how the crystal structure evolves is key for predicting these flows at a large scale. This proposal addresses this challenge by developing a new approach of formulating equations and computer models that can predict the microstructure of any polycrystalline material. The key development is to model the crystal structure using a statistical field that averages over many crystal grains, rather than modelling grains directly. This "continuum" approach is analogous to how flow of fluids like water and air can be modelled by average quantities like velocity and density, rather than by looking at individual molecules. The approach reduces the model to relatively few empirical parameters, which can be systematically calibrated using experimental data. By circumventing the need to resolve each grain of the crystal structure within the model, the continuum approach confers substantial gains in terms of accuracy and predictive capability, opening news doors to efficient and highly resolved simulations of polycrystalline flows. Long-term, the results will support improved predictions for future sea-level rise due to ice-sheet flow, better understanding of the Earth's mantle and plate tectonics, and better understanding of the flow of other materials, such as rock salts in caverns - helping with the transition to net zero.
冰、岩盐和地幔等物质在很长一段时间内以高粘性流体的形式流动。例如,冰川的流动类似于金色糖浆在厨房桌子上的散布。然而,由于冰和岩石在小尺度上的晶体结构,与正常流体相比,它们以有趣且不寻常的方式流动。这种流被称为多晶。这些流动至关重要:冰的流动是海平面上升的主要贡献者,而了解地幔的流动则是板块构造的核心。了解洞穴中盐的流动也很重要,因为作为净零能量转变的一部分,越来越需要使用这些洞穴来储存氢气。多晶流在小范围内形成晶体结构,这使得它们能够更快地流动某些方向,具体取决于晶体的方向。因此,理解和预测晶体结构如何演化是大规模预测这些流动的关键。该提案通过开发一种新的方程和计算机模型方法来解决这一挑战,该方法可以预测任何多晶材料的微观结构。关键的发展是使用对许多晶粒进行平均的统计场来对晶体结构进行建模,而不是直接对晶粒进行建模。这种“连续体”方法类似于如何通过速度和密度等平均量来模拟水和空气等流体的流动,而不是通过观察单个分子来建模。该方法将模型减少到相对较少的经验参数,可以使用实验数据系统地校准这些参数。通过避免解析模型中晶体结构的每个晶粒的需要,连续体方法在准确性和预测能力方面带来了巨大的收益,为多晶流的高效和高分辨率模拟打开了新的大门。从长远来看,这些结果将支持改进对未来因冰盖流动导致的海平面上升的预测,更好地了解地幔和板块构造,以及更好地了解其他物质的流动,例如洞穴中的岩盐 -帮助向净零过渡。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Pegler其他文献

Samuel Pegler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于地下水-土壤-植被-大气连续体理论的干旱灌丛生态系统蒸散发机制与模型研究
  • 批准号:
    42171019
  • 批准年份:
    2021
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
基于数学规划微极连续体有限元理论的土体应变局部化多尺度研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
空时连续性保障的大容量空地一体组网理论与技术
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
多体连续变量系统量子关联的量化及相关算子理论问题研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
绳驱动连续体机器人基础理论与关键技术研究
  • 批准号:
    U1909215
  • 批准年份:
    2019
  • 资助金额:
    200 万元
  • 项目类别:
    联合基金项目

相似海外基金

BRITE Pivot: An Integrated Theory of Continuum and Statistical Mechanics of Active Soft Matter
BRITE Pivot:活性软物质连续体和统计力学的综合理论
  • 批准号:
    2227556
  • 财政年份:
    2023
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Standard Grant
Theory of physical properties of friction in macroscopic objects by continuum analysis
通过连续介质分析研究宏观物体摩擦物理性质的理论
  • 批准号:
    22KJ2190
  • 财政年份:
    2023
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
BRITE Pivot: An Integrated Theory of Continuum and Statistical Mechanics of Active Soft Matter
BRITE Pivot:活性软物质连续体和统计力学的综合理论
  • 批准号:
    2227556
  • 财政年份:
    2023
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Standard Grant
Classical forms of homogeneity in continuum theory
连续统理论中同质性的经典形式
  • 批准号:
    RGPIN-2019-05998
  • 财政年份:
    2022
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Discovery Grants Program - Individual
Classical forms of homogeneity in continuum theory
连续统理论中同质性的经典形式
  • 批准号:
    RGPIN-2019-05998
  • 财政年份:
    2022
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了