Why do alpha-cyanobacteria with form 1A RuBisCO dominate aquatic habitats worldwide? (CYANORUB)

为什么具有 1A 型 RuBisCO 的 α-蓝藻在全世界的水生栖息地中占主导地位?

基本信息

  • 批准号:
    EP/Y028384/1
  • 负责人:
  • 金额:
    $ 23.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

RuBisCO is one of the most abundant enzymes on Earth. Virtually all food webs depend on it to supply fixed carbon. In aerobicenvironments, RuBisCO struggles to distinguish efficiently between CO2 and O2. To compensate, many photosynthetic organismshave developed CO2-concentrating mechanisms (CCMs) to increase the [CO2] around the RuBisCO active site. In cyanobacteria,carboxysomes represent one such CCM, of which two independent forms exist: alpha and beta. This ancient photoautotrophiclineage has succeeded in colonizing habitats worldwide, being primary producers of great ecological importance. Amongst them,cells of the genera Prochlorococcus and Synechococcus, the two most abundant photosynthetic taxa on Earth, dominate oceanicecosystems. These marine picocyanobacteria possess a form IA RuBisCO and alpha-carboxysomes (so-called alpha-cyanobacteria).The remainder of the cyanobacterial radiation was thought to possess beta-carboxysomes and a form IB RuBisCO (beta-cyanobacteria), including freshwater unicellular and filamentous bloom-forming taxa comprising model organisms used inlaboratories worldwide e.g. Synechococcus elongatus and Synechocystis. However, recently I have isolated and sequenced thegenomes of many new unicellular freshwater picocyanobacteria that are phylogenetically much closer to their marine counterpartsand which also possess a form IA RuBisCO and alpha-carboxysomes. Moreover, these organisms have been detected in highabundance in freshwater lakes and reservoirs worldwide. Thus, alpha-cyanobacteria dominate all aquatic systems. CYANORUB seeksto address why this is the case. We hypothesize that alpha-cyanobacteria dominate large, temporally stable water masses,characterized by well-buffered pHs and relatively slow changes in carbonate chemistry. CYANORUB will be crucial for accuratelypredicting the biosphere's response to changing CO2, pH and carbonate chemistry and has biotechnological applications aimed atimproving plant growth.
Rubisco是地球上最丰富的酶之一。几乎所有食物网都依靠它提供固定碳。在多氧环境中,Rubisco努力在二氧化碳和O2之间有效区分。为了补偿,许多光合生物乳果产生了CO2浓缩机制(CCM),以增加Rubisco活性位点周围的[CO2]。在蓝细菌中,羧化体代表一种这样的CCM,其中存在两种独立形式:alpha和beta。这座古老的光自营养基础已成功地在世界范围内殖民栖息地,是生态重要性的主要生产者。其中,甲氯环球菌和Synechococcus属的细胞是地球上两个最丰富的光合分类单元,主导了海洋生物系统。这些海洋上皮细菌具有IA rubisco和α-羧化体(所谓的α-甲状腺细菌)形式。剩余的氰基细菌辐射被认为具有β-羧基助理体和包括beta rubisco(包括beta-cyanobacteria and fill fielwater fillouse nimealwater nimicallult osical nimicallult osical ofersellult fillou fillou fillount fillount of Filloult fillou fillount)全球企业家,例如弹c和synechocystis。但是,最近,我已经分离并测序了许多新的单细胞淡水皮基氨基杆菌的基因组,它们在系统发育上更靠近其海洋对应物,它们也具有IA rubisco和alpha-carboxysomes的形式。此外,这些生物已经在全球淡水湖泊和水库中的高压中被发现。因此,α-甲状腺细菌占主导地位。 Cyanorub Seeksto解决了为什么是这种情况。我们假设α-甲状腺杆菌占据了大型,暂时稳定的水肿块,其特征是缓冲良好,碳酸盐化学的变化相对较慢。 Cyanorub对于准确预测生物圈对变化的CO2,pH和碳酸盐化学的反应至关重要,并且具有旨在旨在atimprove植物生长的生物技术应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Scanlan其他文献

David Scanlan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Scanlan', 18)}}的其他基金

Elucidating the consequences of picocyanobacterial lipid remodelling for global marine primary production estimates
阐明微微蓝藻脂质重塑对全球海洋初级生产力估算的影响
  • 批准号:
    NE/V000373/1
  • 财政年份:
    2021
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Research Grant
JTS-100: A step change in accurately measuring photosynthesis
JTS-100:精确测量光合作用的重大变革
  • 批准号:
    NE/T008962/1
  • 财政年份:
    2019
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Research Grant
Revealing a mechanistic understanding of the role of viruses and host nutrient status in modulating CO2 fixation in key marine phototrophs
揭示病毒和宿主营养状态在调节关键海洋光养生物二氧化碳固定中的作用的机制理解
  • 批准号:
    NE/N003241/1
  • 财政年份:
    2016
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Research Grant
Protistan grazing and viral infection of marine picoplankton: a role for the host cell surface?
海洋超微型浮游生物的原生生物放牧和病毒感染:宿主细胞表面的作用?
  • 批准号:
    NE/J02273X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Research Grant
Elucidating niche adaptation mechanisms in a ubiquitous marine phototroph: a targeted 'omics approach
阐明普遍存在的海洋光养生物的生态位适应机制:有针对性的“组学方法”
  • 批准号:
    NE/I00985X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Research Grant
Regulatory gene networks and ecological distinctness in marine Synechococcus
海洋聚球藻的调控基因网络和生态独特性
  • 批准号:
    NE/G017948/1
  • 财政年份:
    2010
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Research Grant
How important is prokaryotic photoheterotrophy in ecosystems of the Atlantic Ocean from 40oS to 40oN?
原核光异养在南纬 40 度到北纬 40 度的大西洋生态系统中有多重要?
  • 批准号:
    NE/H007083/1
  • 财政年份:
    2010
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Research Grant
Dissecting, and revealing the controls on, the group-specific CO2 fixation budget of the Atlantic Ocean
剖析并揭示对大西洋特定群体二氧化碳固定预算的控制
  • 批准号:
    NE/G005125/1
  • 财政年份:
    2009
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Research Grant
Metal composition of marine cyanobacteria - an indicator of niche adaptation and cell physiological state?
海洋蓝藻的金属成分 - 生态位适应和细胞生理状态的指标?
  • 批准号:
    NE/F004249/1
  • 财政年份:
    2008
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Research Grant
Defining the molecular basis of phylogenetic diversity in marine Synechococcus / a genomic approach
定义海洋聚球藻系统发育多样性的分子基础/基因组方法
  • 批准号:
    NE/D003385/1
  • 财政年份:
    2006
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Research Grant

相似国自然基金

信用债市场做市商管理和摩擦识别:基于拓展的搜寻匹配模型分析
  • 批准号:
    72303125
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于智能合约的央行数字货币自动做市商机制研究
  • 批准号:
    72371073
  • 批准年份:
    2023
  • 资助金额:
    39.00 万元
  • 项目类别:
    面上项目
基于捕获“Do not eat me”信号的肺癌异质性分子功能可视化及机理研究
  • 批准号:
    92259102
  • 批准年份:
    2022
  • 资助金额:
    60.00 万元
  • 项目类别:
    重大研究计划
基于达文波特星形酵母Do18强化发酵的糟带鱼生物胺生物调控机制
  • 批准号:
    32202187
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于达文波特星形酵母Do18强化发酵的糟带鱼生物胺生物调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

How do CNS fibroblasts regulate the response to neuroinflammation?
中枢神经系统成纤维细胞如何调节对神经炎症的反应?
  • 批准号:
    10321229
  • 财政年份:
    2021
  • 资助金额:
    $ 23.84万
  • 项目类别:
How do CNS fibroblasts regulate the response to neuroinflammation?
中枢神经系统成纤维细胞如何调节对神经炎症的反应?
  • 批准号:
    10543077
  • 财政年份:
    2021
  • 资助金额:
    $ 23.84万
  • 项目类别:
Do the Basal ganglia modulate the neural clock speed through alpha and beta wave?
基底神经节是否通过α波和β波调节神经时钟速度?
  • 批准号:
    17K01617
  • 财政年份:
    2017
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
How do neurons in the brain decide to refine their synaptic connections in vivo?
大脑中的神经元如何决定在体内完善其突触连接?
  • 批准号:
    9383862
  • 财政年份:
    2017
  • 资助金额:
    $ 23.84万
  • 项目类别:
Do alpha 5 GABA-A receptors contribute to memory impairment after traumatic brain injury?
α5 GABA-A 受体是否会导致脑外伤后记忆障碍?
  • 批准号:
    283899
  • 财政年份:
    2012
  • 资助金额:
    $ 23.84万
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了