Electro-fermentation process design for efficient CO2 conversion into value-added products

电发酵工艺设计可有效地将二氧化碳转化为增值产品

基本信息

  • 批准号:
    EP/Y002482/1
  • 负责人:
  • 金额:
    $ 21.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The chemical industries are heavily reliant on crude oil, a finite and unsustainable resource with global price fluctuations with negative impact on global economies. Depleting petrochemical reserves, coupled with unprecedented rise in global carbon emissions triggering severe weather events, represent the driving forces behind the development of environmentally sound, sustainable alternatives and to curb our reliance on fossil-based resources. Industrial biotechnology using microbial cell factories has entered an era where scientific and technological advances in bioengineering can contribute appreciably towards sustainable product development using renewable carbon feedstocks. Utilization of waste and greenhouse gases such as CO2 or CH4 to produce valuable products, thereby reducing carbon emissions and creating net-zero circular economies, should be at the forefront of the governments sustainable industrial decarbonization policies. These waste gases have the potential to become the third generation sustainable and techno economically feasible feedstocks. C1 gas consuming aerobic bacteria possess significant advantages over their anaerobic counterparts such as wider product spectrum, higher productivities and genetic amenability. However, the flammability concerns of H2 and O2 mixtures limit optimum O2 concentrations in aerobic gas fermentations. Lower O2 concentrations mean higher mass transfer requirements are necessary for a viable fermentation process. This is a known problem in a typical industrial aerobic fermentation and the problem is only exacerbated in aerobic gas fermentation where O2 concentration are limited. An alternative process design is therefore pivotal for an economically feasible process within the capital cost context of industrial gas fermentation.Microbial electrosynthesis combines electrochemistry and biotechnology in a resource-efficient processes by relying on waste raw materials and renewable energies. Electro-biotechnology strives for the concept of power-to-chemicals to narrow or even close the gap between the energy and the chemistry sector. Electrogenic /electroactive bacteria (EAB) such as, Geobacter sulfurreducens and Shewanella oneidensis are natural carriers of extracellular electron transfer pathways and are extensively studied, however O2 sensitivity and lack of genetic tools have limited the use of these bacteria mostly for bioremediation purposes.In this project we aim to design and set up a bioprocess platform that will enable the assessment of electro-fermentative potential of biocatalysts for the production of value-added chemicals. This platform will be used to elucidate the genetic basis of external electron transfer (EET) in Cupriavidus metallidurans CH34, a facultative anaerobic, CO2 consuming bacteria. This collaborative multidisciplinary study aims to use complimentary approaches in electrochemical characterisation and engineering biology to elucidate and validate the EET mechanism in this bacterium. This will be followed by demonstrating its potential in a bio-electro fermentation process, producing a valuable product from CO2. Elucidating the exact mechanism of EET in this bacterium will also open doors to potentially transfer this mechanism to its close relative, Cupriavidus necator H16 which is proven to be an efficient autotrophic bacterium converting CO2 to highly valuable products. With the unique and complementary skills from the PI (bioprocess enigneering/development), the Co-I (synthetic biology) and the international partners (sustainable electrochemistry), via effective knowledge exchange activities, including outreach activities, we will showcase the integration of this technology within the current chemical industries as a prime example for sustainable industrial decarbonisation.
化学工业在很大程度上依赖原油,这是一种有限且不可持续的资源,具有全球价格波动,对全球经济体有负面影响。耗尽的石化储量,再加上触发恶劣天气事件的全球碳排放量前所未有的增长,代表了发展环境合理,可持续替代方案的驱动力,并遏制了我们对基于化石的资源的依赖。使用微生物细胞工厂的工业生物技术进入了一个时代,在这个时代,生物工程的科学和技术进步可以使用可再生碳原料为可持续的产品开发做出明显贡献。利用废物和温室气体(例如二氧化碳或CH4)生产有价值的产品,从而减少碳排放并创造零循环经济体,应位于政府可持续的工业脱碳政策的最前沿。这些废气有可能成为第三代的可持续和技术在经济上可行的原料。与厌氧菌相比,C1气体消耗的有氧细菌具有显着优势,例如更宽的产品光谱,更高的生产率和遗传性不足。但是,H2和O2混合物的可燃性问题限制了有氧气体发酵中最佳O2浓度。较低的O2浓度意味着较高的传质要求对于可行的发酵过程是必需的。这在典型的工业有氧发酵中是一个已知的问题,该问题仅在O2浓度受到限制的有氧气体发酵中加剧。因此,替代过程设计对于在工业气体发酵的资本成本背景下进行经济可行的过程至关重要。Microbial电气合成通过依靠废物原材料和可再生能源结合了资源效率流程中的电化学和生物技术。电生物技术努力努力实力到化学物质的概念,以缩小甚至缩小能源和化学部门之间的差距。电源 /电活性细菌(EAB),例如,地理杆菌硫剂和Shewanella Oneidensis是细胞外电子转移途径的自然载体,并且经过了广泛的研究,但是O2的敏感性和缺乏遗传工具在此计划中限制了这些细菌的使用。生物催化剂对产生增值化学物质的产生潜力。该平台将用于阐明Cupriavidus Metallidurans CH34中外部电子转移(EET)的遗传基础,这是一种疗养的厌氧,二氧化碳食用细菌。这项合作的多学科研究旨在在电化学表征和工程生物学中使用免费方法来阐明和验证该细菌中的EET机制。随后将证明其在生物电子发酵过程中的潜力,并从CO2产生有价值的产品。阐明该细菌中EET的确切机制还将打开门,将此机制可能转移到其近亲Cupriavidus necator H16中,这被证明是一种有效的自身营养细菌,将CO2转化为高度有价值的产品。凭借PI(生物处理辅助/开发),Co-I(合成生物学)和国际合作伙伴(可持续的电化学)的独特和互补技能,包括有效的知识交换活动,包括外展活动,我们将展示该技术在当前的化学工业中的整合,以此作为可持续工业脱碳的可持续化学工业典范。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rajesh Reddy Bommareddy其他文献

Establishing Mixotrophic Growth of Cupriavidus necator H16 on CO2 and Volatile Fatty Acids
建立 Cupriavidus necator H16 在 CO2 和挥发性脂肪酸上的混合营养生长
  • DOI:
    10.3390/fermentation8030125
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kamran Jawed;V. Irorere;Rajesh Reddy Bommareddy;N. Minton;K. Kovács
  • 通讯作者:
    K. Kovács

Rajesh Reddy Bommareddy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

麸皮固态发酵过程纤维组分变化与微生物代谢机制研究
  • 批准号:
    32330081
  • 批准年份:
    2023
  • 资助金额:
    218.00 万元
  • 项目类别:
    重点项目
我国传统老坛酸菜发酵过程中活性微生物演替规律及其特征香气的代谢形成机制
  • 批准号:
    32372303
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
沼气循环原位驱动厨余垃圾厌氧耗氢产甲烷途径及菌群协作机制
  • 批准号:
    52370136
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
液体粪便微氧发酵产乳酸过程优化及温室气体协同减排机理研究
  • 批准号:
    32372938
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
发酵液中融合纤维素酶的原位泡沫分离过程设计及其气-液传质强化
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Characterizing Pareto fronts: Trade-offs in the yeast growth cycle constrain adaptation
表征帕累托前沿:酵母生长周期的权衡限制了适应
  • 批准号:
    10749856
  • 财政年份:
    2024
  • 资助金额:
    $ 21.06万
  • 项目类别:
Development of continuous process on ethanol fermentation by dimorphic Mucor sp. with control of morphological changing factor
二态毛霉连续乙醇发酵工艺的开发。
  • 批准号:
    23K13866
  • 财政年份:
    2023
  • 资助金额:
    $ 21.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
  • 批准号:
    10818835
  • 财政年份:
    2023
  • 资助金额:
    $ 21.06万
  • 项目类别:
Using Common Fund Datasets to Illuminate Drug-Microbial Interactions
使用共同基金数据集阐明药物-微生物相互作用
  • 批准号:
    10777339
  • 财政年份:
    2023
  • 资助金额:
    $ 21.06万
  • 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
  • 批准号:
    10573109
  • 财政年份:
    2023
  • 资助金额:
    $ 21.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了