Understanding Turbulent Hydrogen Flames and Instability via Measurements and Simulations

通过测量和模拟了解湍流氢火焰和不稳定性

基本信息

  • 批准号:
    EP/W034700/1
  • 负责人:
  • 金额:
    $ 59.35万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Hydrogen is the simplest fuel, yet it has very different characteristics compared to common hydrocarbons: (a) high energy release per unit mass, (b) very high diffusivity, and (c) high reactivity. These three factors result in high flame speeds, which peak at around ten times those of hydrocarbons, and extremely wide flammability limits, from 3 to 95 percent in air. Hydrogen also has a propensity to form unstable flame surfaces owing to thermo-diffusive instabilities associated with the very light nature of hydrogen molecules, which form long finger-like leading edges, and very thick reaction zones, which means that the way in which we describe the physics of flames for other hydrocarbons does not work well for hydrogen. In this project we aim to develop simulations and experiments that will unveil quantitatively how these instabilities affect the reaction rate and local species formation, allowing the development of models that can be used in new carbon-free engines and gas turbines. The project will use direct numerical simulations and experiments of a stabilised hydrogen flame at atmospheric pressure and temperature, for a range of hydrogen/oxygen ratios and dilution. The experimental database will for the first time generate reconstructed 3D flame surfaces and velocities, joint two-dimensional temperature, OH radical measurements and one-dimensional hydrogen species concentrations. The numerical database will produce simulations overlapping with the experiments, as well as an extension of conditions inaccessible to experiments to higher pressures of up to 5 times atmospheric. The combination of matched experimental and numerical data will enable direct comparison, to explore the instability behaviour and dependence on reactant conditions, confirm numerical predictions, and use more complete DNS data to extrapolate from lower-fidelity experimental data.The particular issues of thermodiffusive instabilities are also relevant to other potential reactive mixtures, and some of the findings may be generalisable to other physical situations. More immediately, the research is also supported by industrial partners at the leading edge of development of hydrogen-based land and air propulsion, and findings from the proposed research will be immediately incorporated into models for turbulent combustion used at the collaborating facilities.
氢是最简单的燃料,但与常见的碳氢化合物相比,它具有非常不同的特性:(a)每单位质量释放高能量,(b)非常高的扩散率,以及(c)高反应性。这三个因素导致火焰速度很高,其峰值约为碳氢化合物的十倍,并且可燃性极限极宽,在空气中为 3% 至 95%。由于与氢分子的轻质性质相关的热扩散不稳定性,氢还具有形成不稳定火焰表面的倾向,氢分子形成长指状前缘和非常厚的反应区,这意味着我们描述的方式其他碳氢化合物的火焰物理原理不适用于氢。在这个项目中,我们的目标是开发模拟和实验,定量揭示这些不稳定性如何影响反应速率和局部物种形成,从而开发可用于新型无碳发动机和燃气轮机的模型。该项目将在大气压和温度下对稳定的氢火焰进行直接数值模拟和实验,适用于一系列氢/氧比率和稀释度。该实验数据库将首次生成重建的 3D 火焰表面和速度、联合二维温度、OH 自由基测量值和一维氢物质浓度。数值数据库将产生与实验重叠的模拟,并将实验无法达到的条件扩展到高达 5 倍大气压的更高压力。匹配的实验数据和数值数据的结合将能够进行直接比较,探索不稳定性行为和对反应物条件的依赖性,确认数值预测,并使用更完整的 DNS 数据从保真度较低的实验数据进行推断。热扩散不稳定性的特殊问题是也与其他潜在的反应混合物相关,并且一些发现可能适用于其他物理情况。更直接的是,该研究还得到了处于氢基陆地和空气推进开发前沿的工业合作伙伴的支持,拟议研究的结果将立即纳入合作设施使用的湍流燃烧模型中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simone Hochgreb其他文献

A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part Ⅱ: Experimental study and comparison
具有不同直径谐振管的级联环路热声驱动制冷机。
  • DOI:
    10.1016/j.energy.2020.118232
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Jingyuan Xu;Jianying Hu;Yanlei Sun;Huizhi Wang;Zhanghua Wu;Jiangfeng Hu;Simone Hochgreb;Ercang Luo
  • 通讯作者:
    Ercang Luo
Study on a heat-driven thermoacoustic refrigerator for low-grade heat recovery
低品位热回收热驱动热声制冷机的研究
  • DOI:
    10.1016/j.apenergy.2020.115167
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Jingyuan Xu;Ercang Luo;Simone Hochgreb
  • 通讯作者:
    Simone Hochgreb
Reconciling turbulent burning velocity with flame surface area in small-scale turbulence
小规模湍流中湍流燃烧速度与火焰表面积的协调
  • DOI:
    10.1017/jfm.2018.841
  • 发表时间:
    2018-11-05
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    G. Nivarti;RS Cant;Simone Hochgreb
  • 通讯作者:
    Simone Hochgreb
Numerical study on a heat-driven piston-coupled multi-stage thermoacoustic-Stirling cooler
热驱动活塞耦合多级热声斯特林冷却器的数值研究
  • DOI:
    10.1016/j.apenergy.2021.117904
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Jingyuan Xu;Jianying Hu;Ercang Luo;Jiangfeng Hu;Limin Zhang;Simone Hochgreb
  • 通讯作者:
    Simone Hochgreb
Analysis of the information overlap between the PIV and OH* chemiluminescence signals in turbulent flames using a sparse sensing framework
使用稀疏传感框架分析湍流火焰中 PIV 和 OH* 化学发光信号之间的信息重叠
  • DOI:
    10.1016/j.combustflame.2023.113004
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Alberto Procacci;M. M. Kamal;Simone Hochgreb;A. Coussement;Aless;ro Parente;ro
  • 通讯作者:
    ro

Simone Hochgreb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simone Hochgreb', 18)}}的其他基金

Mechanisms and Synthesis of Materials for Next-Generation Lithium Batteries Using Flame Spray Pyrolysis
利用火焰喷雾热解制备下一代锂电池材料的机理和合成
  • 批准号:
    EP/T015845/1
  • 财政年份:
    2020
  • 资助金额:
    $ 59.35万
  • 项目类别:
    Research Grant
Tracer-free, non-intrusive, time- and space-resolved temperature and scalar measurements
无示踪剂、非侵入式、时间和空间分辨的温度和标量测量
  • 批准号:
    EP/T030801/1
  • 财政年份:
    2020
  • 资助金额:
    $ 59.35万
  • 项目类别:
    Research Grant
High precision temperature measurements for reacting flows
反应流的高精度温度测量
  • 批准号:
    EP/K02924X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 59.35万
  • 项目类别:
    Research Grant
SAMULET_Project_2_Combustion Systems for Low Environmental Impact
SAMULET_Project_2_低环境影响燃烧系统
  • 批准号:
    EP/G035784/1
  • 财政年份:
    2009
  • 资助金额:
    $ 59.35万
  • 项目类别:
    Research Grant

相似海外基金

Fundamentals of turbulent swirl-stabilized combustion of ammonia/hydrogen blends for carbon-free energy applications
用于无碳能源应用的氨/氢混合物的湍流涡流稳定燃烧的基础知识
  • 批准号:
    2301485
  • 财政年份:
    2023
  • 资助金额:
    $ 59.35万
  • 项目类别:
    Standard Grant
Simulations and Modeling of Turbulent Combustion Using Fuel Mixtures with High Hydrogen Content
使用高氢含量燃料混合物的湍流燃烧模拟和建模
  • 批准号:
    277815585
  • 财政年份:
    2016
  • 资助金额:
    $ 59.35万
  • 项目类别:
    Research Grants
Investigation of differential diffusion effect for hydrogen turbulent combustion
氢气湍流燃烧微分扩散效应研究
  • 批准号:
    418988-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 59.35万
  • 项目类别:
    University Undergraduate Student Research Awards
Investigation of differential diffusion effect for hydrogen turbulent combustion
氢气湍流燃烧微分扩散效应研究
  • 批准号:
    418988-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 59.35万
  • 项目类别:
    University Undergraduate Student Research Awards
Combustion dynamics of turbulent swirl flames with hydrogen addition
加氢湍流旋流火焰的燃烧动力学
  • 批准号:
    EP/G063788/1
  • 财政年份:
    2010
  • 资助金额:
    $ 59.35万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了