CoTide - Co-design to deliver Scalable Tidal Stream Energy
CoTide - 共同设计提供可扩展的潮汐流能源
基本信息
- 批准号:EP/X03903X/1
- 负责人:
- 金额:$ 938.2万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The development of tidal stream energy presents a significant opportunity for the UK with a power generation potential in excess of 6GW nationally, and greater than 150GW globally. Delivering on net-zero and climate change objectives will require development and exploitation of all renewable energy resources to provide a robust and secure energy supply. The predictability of the tidal resource is a key benefit that can substantially contribute to resilient energy networks and complement less predictable renewable energy sources, e.g. wind, wave and solar. The UK currently leads tidal stream technology and science development, and there is significant opportunity to ensure global leadership of this exciting emerging sustainable energy sector.To date, the largest tidal device installed is 2MW and the largest array of devices is 6MW in Orkney and Pentland Firth respectively. Device technologies, marine infrastructure, deployment, and operational strategies have all been refined through industrial research, design and deployment at testing sites, assisted by university partnerships. The challenge now faced by the industry is to understand how to deliver tidal stream energy at a scale that will make a meaningful energy contribution. The solution hinges on the ability to deliver reliable, sustainable, scalable and affordable engineering solutions. The engineering challenge is complex and multi-faceted, and the importance of and sensitivity to design drivers are not always well understood.CoTide's research vision is to develop and demonstrate holistic integrated tools and design processes for tidal stream energy that will significantly reduce costs by removing unnecessary redundancy and improving confidence in engineering solutions, providing the transformative engineering processes and designs that will enable tidal energy to make a significant contribution to achieving climate change objectives by 2030-40.CoTide brings together three major university multi-disciplinary teams, each with deep world-leading expertise across the major engineering disciplines essential for the design of tidal stream devices. These include device hydrodynamics, composites and rotor materials, structures and reliability, metocean resource and environmental modelling, system control and optimisation. The constituent engineering design capabilities will be integrated towards addressing the big questions facing tidal stream energy developers through a unified control co-design process. Through this holistic approach, CoTide will not only develop the framework to assess the impact of design drivers and design decisions but will contribute fundamental understanding of unsteady rotor loads and means to control and resist these, how to use contemporary and emerging manufacturing methods to benefit cost and through-life reliability in addition to maximising the potential of digitalisation for optimal performance.With input from its Independent Advisory Board, the Programme resources will be periodically reviewed, adapted and refocused to concentrate on the research challenges that emerge from our research, the tidal energy sector and policy space, and that offer the best opportunities to support industry cost reduction pathways. As CoTide evolves, in addition to its core skills, the partners have a significant breadth of additional expertise to draw upon, with world leading capabilities in complementary areas within offshore renewable energy.CoTide is an ambitious but realistic programme that has the scale, academic gravitas, and resource to achieve innovation through addressing transformative design questions. Through its co-design framework, considering the full scope of interconnected engineering challenges and environmental factors, it will deliver the understanding, tools and data to support the progressive and step change reductions in cost and uncertainty needed to deliver scalable, sustainable and affordable tidal stream energy.
潮汐流能源的发展为英国带来了重大机遇,其全国发电潜力超过6GW,全球发电潜力超过150GW。实现净零排放和气候变化目标需要开发和利用所有可再生能源,以提供强劲和安全的能源供应。潮汐资源的可预测性是一项关键优势,可以极大地促进弹性能源网络,并补充难以预测的可再生能源,例如:风、波浪和太阳能。英国目前在潮汐流技术和科学发展方面处于领先地位,并且有重大机会确保这一令人兴奋的新兴可持续能源领域的全球领导地位。迄今为止,在奥克尼群岛和彭特兰安装的最大潮汐装置为 2MW,最大装置阵列为 6MW分别是弗斯。在大学合作伙伴的协助下,设备技术、海洋基础设施、部署和运营策略都通过工业研究、设计和测试地点的部署得到了完善。该行业现在面临的挑战是了解如何以一定规模提供潮汐流能源,从而做出有意义的能源贡献。该解决方案取决于提供可靠、可持续、可扩展且经济实惠的工程解决方案的能力。工程挑战是复杂且多方面的,设计驱动因素的重要性和敏感性并不总是得到很好的理解。CoTide 的研究愿景是开发和演示潮汐流能源的整体集成工具和设计流程,通过消除不必要的冗余并提高对工程解决方案的信心,提供变革性的工程流程和设计,使潮汐能能够为 2030-40 年实现气候变化目标做出重大贡献。CoTide 汇集了三所主要大学的多学科团队,每个团队都具有深厚的跨主要工程学科的世界领先专业知识对于潮汐流设备的设计至关重要。其中包括设备流体动力学、复合材料和转子材料、结构和可靠性、海洋气象资源和环境建模、系统控制和优化。组成的工程设计能力将通过统一的控制协同设计流程进行整合,以解决潮汐流能源开发商面临的重大问题。通过这种整体方法,CoTide 不仅将开发评估设计驱动因素和设计决策影响的框架,还将贡献对不稳定转子负载的基本理解以及控制和抵抗这些负载的方法,以及如何使用当代和新兴的制造方法来降低成本除了最大限度地发挥数字化潜力以实现最佳性能之外,还包括整个生命周期的可靠性。根据独立顾问委员会的意见,该计划资源将定期审查、调整和重新调整重点,以集中于我们的研究中出现的研究挑战,潮汐能源部门和政策空间,以及这为支持行业降低成本提供了最佳机会。随着 CoTide 的发展,除了其核心技能之外,合作伙伴还拥有广泛的额外专业知识可供利用,在海上可再生能源互补领域拥有世界领先的能力。CoTide 是一个雄心勃勃但现实的项目,具有规模和学术影响力,以及通过解决变革性设计问题实现创新的资源。通过其协同设计框架,考虑到相互关联的工程挑战和环境因素的全部范围,它将提供理解、工具和数据,以支持逐步减少成本和不确定性,从而提供可扩展、可持续和负担得起的潮汐流活力。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modelling the effects of boundary proximity on a tidal rotor using the actuator line method
使用致动器线方法模拟边界邻近对潮汐转子的影响
- DOI:http://dx.10.36688/ewtec-2023-407
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Edwards H
- 通讯作者:Edwards H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Willden其他文献
Richard Willden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Willden', 18)}}的其他基金
Tidal Stream Energy - Designing for Performance
潮汐流能源 - 性能设计
- 批准号:
EP/R007322/1 - 财政年份:2018
- 资助金额:
$ 938.2万 - 项目类别:
Fellowship
相似国自然基金
儿茶酚基导电金属有机框架膜的设计构筑及其对CO2的吸附分离研究
- 批准号:22305211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于两步热化学循环分解CO2的铁铈双基复合氧载体M1-yFeyOx@N1-zCezO2设计及机制研究
- 批准号:22309016
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Zn基复合氧化物界面设计用于优化CO加氢反应的理论研究
- 批准号:22302190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
含硫离子液体的设计合成及其捕集与转化CO2的方法与机制研究
- 批准号:22379075
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
碳纳米管限域的钴基费托合成催化剂的设计及其催化性能研究
- 批准号:22362030
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
CAREER: Frequency Agile Real-Time Reconfigurable RF Analog Co-Processor Design Leveraging Engineered Nanoparticle and 3D Printing
职业:利用工程纳米颗粒和 3D 打印进行频率捷变实时可重构射频模拟协处理器设计
- 批准号:
2340268 - 财政年份:2024
- 资助金额:
$ 938.2万 - 项目类别:
Continuing Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
- 批准号:
2334628 - 财政年份:2024
- 资助金额:
$ 938.2万 - 项目类别:
Standard Grant
CAREER: Physics-Infused Reduced-Order Modeling for Control Co-Design of Morphing Aerial Autonomous Systems
职业:用于变形空中自主系统控制协同设计的物理降阶建模
- 批准号:
2340266 - 财政年份:2024
- 资助金额:
$ 938.2万 - 项目类别:
Standard Grant
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
- 批准号:
2340273 - 财政年份:2024
- 资助金额:
$ 938.2万 - 项目类别:
Continuing Grant
CAREER: Reliable and Accelerated Deep Neural Networks via Co-Design of Hardware and Algorithms
职业:通过硬件和算法的协同设计实现可靠且加速的深度神经网络
- 批准号:
2340516 - 财政年份:2024
- 资助金额:
$ 938.2万 - 项目类别:
Continuing Grant