Aviation-to-Grid: Grid flexibility through multiscale modelling and integration of power systems with electrified air transport

航空到电网:通过多尺度建模以及电力系统与电气化航空运输的集成实现电网灵活性

基本信息

  • 批准号:
    EP/W028905/1
  • 负责人:
  • 金额:
    $ 51.33万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Aviation is arguably one of the most difficult sectors to be decarbonised. The UK government's recent Transport Decarbonisation Plan targets for Accelerating Aviation Decarbonisation to reach net zero by 2050, aiming to decarbonise emissions from airport operations in England by 2040, and to support the development of new and zero carbon UK aircraft technology [1]. The Department for Transport's Aviation Strategy recommends electrification as a possible solution to mitigate aviation's carbon emissions [2]. Electrification technologies are being deployed successfully in land-based transport. Electrification is now being challenged to address the more ambitious aviation decarbonisation. In the air, electric and hybrid aircraft particularly for short-haul or regional electric aircraft have advanced rapidly. On the ground, UK airports (Heathrow as a project partner of this proposal) lead pilot decarbonisation projects to enable the transition to regional electric and sustainable aviation, and shape the landscape of future low-carbon infrastructure and services.Currently, there is a significant disconnect between power systems and electrified air transport in terms of energy users and suppliers, infrastructure and interoperability to achieve the net-zero in both industries. The electrification of aviation will create a new nexus between power systems and electrified air transport. There are several key challenges:1) The power systems will require electrified aviation to integrate into ground energy infrastructure and must not overload the future grid.2) Electrified aviation as a new energy user requires the power systems to supply large volumes of low-carbon electricity to meet new loads of electric aircraft.3) Significant charging infrastructures are required. Our feasibility study on a UK airport indicates that even if only 10% domestic flights are electrified then £50M will need to be spent on charging infrastructure.4) Significantly high costs will be incurred for building additional power generation capacity. Our initial study indicates 15 GW additional power generation capacity will be required if 45% of UK domestic flights are electrified.This proposed research will explore the fundamental integration of a new nexus between power system and electrified air transport system, named 'Aviation-to-Grid', with an ambitious aim to bridge the significant disconnect between two systems in terms of energy demand and supply, infrastructure and interoperability. This will be achieved by using the multiscale energy modelling and system integration as key research methods. A new concept of Aviation-to-Grid flexibility will be investigated as a potential solution to unlock the flexibility provisions from Aviation-to-Grid, so that infrastructure and operation costs can be reduced and co-optimised across both systems. This project, for the first time, brings power industry (National Grid ESO), airport operators (Heathrow Airport), energy infrastructure solutions (UK Power Networks Services), transport policy (Department for Transport) and the UK academic communities (Supergen, DTE Network) together in a truly interdisciplinary manner.In this project, multiscale energy modelling (WP1) and multiscale system integration (WP2) will explore a bottom-up approach across the new nexus of power systems and electrified air transport. Aviation-to-Grid flexibility provisions will be evaluated with cost-benefit analysis (WP3). Industrial application potential of Aviation-to-Grid flexibility will be demonstrated in a real-time simulation platform in the lab using representative case studies with recommendations for implementation (WP4).[1] Decarbonising transport: a better, greener Britain, Department for Transport, 14 July 2021[2] Aviation 2050 - the future of UK aviation, Department for Transport, 22 October 2019
航空业可以说是脱碳最困难的行业之一。英国政府最近的交通脱碳计划目标是到 2050 年加速航空脱碳,实现净零排放,旨在到 2040 年实现英国机场运营的碳排放脱碳,并支持航空业的发展。英国交通部航空战略建议将电气化作为减少航空碳排放的可能解决方案[2]。在陆地运输中成功部署的电气化现在正面临着解决更雄心勃勃的航空脱碳问题的挑战。在空中,尤其是短途或支线电动飞机,英国机场(希思罗机场)进展迅速。作为该提案的项目合作伙伴)牵头试点脱碳项目,以实现向区域电动和可持续航空的过渡,并塑造未来低碳基础设施和服务的格局。目前,电力系统和电气化航空运输之间存在严重脱节就而言航空电气化将在电力系统和电气化航空运输之间建立新的联系:1)电力系统需要电气化。航空要融入地面能源基础设施,不能让未来电网超载。2)电动航空作为新能源用户,要求电力系统提供大量低碳电力,以满足电动飞机的新负荷。3)意义重大我们对英国机场的可行性研究表明,即使只有 10% 的国内航班实现电气化,充电基础设施也需要花费 5000 万英镑。4) 建设额外的发电能力将产生相当高的成本。我们的初步研究表明,如果 45% 的英国国内航班实现电气化,则需要 15 GW 的额外发电能力。这项拟议的研究将探索电力系统和电气化航空运输系统之间新关系的根本整合,名为“航空到电网”的雄心勃勃的目标是弥合两个系统之间在能源需求和供应、基础设施和互操作性方面的重大脱节,这将通过使用多尺度能源建模和系统集成作为关键研究方法来实现。将研究航空到电网灵活性的新概念,作为释放航空到电网灵活性规定的潜在解决方案,从而可以降低并共同优化两个系统的基础设施和运营成本。首次带来电力行业(国家电网 ESO)、机场运营商(希思罗机场)、能源基础设施解决方案(英国电力网络服务)、交通政策(交通部)和英国学术界(Supergen、DTE Network)以真正跨学科的方式共同努力。项目中,多尺度能源建模(WP1)和多尺度系统集成(WP2)将探索跨电力系统新关系的自下而上方法,并将评估航空到电网的灵活性规定。成本效益分析(WP3)。航空到电网灵活性的工业应用潜力将在实验室的实时模拟平台上使用代表性案例研究和实施建议进行展示(WP4)。[1]更好、更环保的英国,交通部,2021 年 7 月 14 日[2] 航空 2050 - 英国航空业的未来,交通部,2019 年 10 月 22 日

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xin Zhang其他文献

Numerical analysis of dual coherent optical frequency combs discrete Fourier transform processor
双相干光频率梳离散傅里叶变换处理器的数值分析
A protocol for systematic review and meta-analysis
系统评价和荟萃分析方案
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ziru Yu;Jingtian Xian;Mi Sun;Wenxiu Zhang;Linwei Li;Xin Zhang;Huijuan Yu
  • 通讯作者:
    Huijuan Yu
Fault Coupling Analysis and Reliability Assessment of Actuation System Based on Bond Graph Model
基于键合图模型的驱动系统故障耦合分析及可靠性评估
  • DOI:
    10.3390/app13137462
  • 发表时间:
    2023-06-24
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiyao Zhao;Xuanhao Li;Xiaoyu Cui;Xin Zhang
  • 通讯作者:
    Xin Zhang
Understanding the combustion characteristics and establishing a safety evaluation technique based on the overcharged thermal runaway of lithium-ion batteries
了解锂离子电池过充热失控燃烧特性并建立安全评价技术
  • DOI:
    10.1016/j.est.2023.109039
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Shansong Bi;Zhanglong Yu;Sheng Fang;Xueling Shen;Yi Cui;Feng‐ling Yun;Dong Shi;Min Gao;Hang Zhang;Ling Tang;Xin Zhang;Yanyan Fang;Xiangjun Zhang
  • 通讯作者:
    Xiangjun Zhang
A phase I, randomized study to evaluate the safety, tolerability, and pharmacokinetics of mefunidone in healthy subjects
一项 I 期随机研究,旨在评估健康受试者中美富尼酮的安全性、耐受性和药代动力学
  • DOI:
    10.3389/fphar.2024.1414066
  • 发表时间:
    2024-06-12
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Mai Han;Bishan Huo;Gaoyun Hu;Xin Zhang;Gang Cui;Wei Wu;Na Mi;Shixi Zhang;Jiangli Jin;Xing Lu;Bidong Wu;Chunyan Xiao;Jing Wang;Zheng Bian;Jintong Li
  • 通讯作者:
    Jintong Li

Xin Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xin Zhang', 18)}}的其他基金

Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
  • 批准号:
    2403813
  • 财政年份:
    2024
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Standard Grant
Digitalisation of Electrical Power and Energy Systems Operation (DEEPS)
电力和能源系统运行数字化 (DEEPS)
  • 批准号:
    MR/W011360/2
  • 财政年份:
    2023
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Fellowship
Global Centers Track 1: Global Nitrogen Innovation Center for Clean Energy and Environment (NICCEE)
全球中心轨道 1:全球清洁能源与环境氮创新中心 (NICCEE)
  • 批准号:
    2330502
  • 财政年份:
    2023
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Standard Grant
Digitalisation of Electrical Power and Energy Systems Operation (DEEPS)
电力和能源系统运行数字化 (DEEPS)
  • 批准号:
    MR/W011360/1
  • 财政年份:
    2022
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Fellowship
Belmont Forum Collaborative Research: Guiding the pursuit for sustainability by co-developing a Sustainable Agriculture Matrix (SAM)
贝尔蒙特论坛合作研究:通过共同开发可持续农业矩阵(SAM)来指导对可持续发展的追求
  • 批准号:
    2137033
  • 财政年份:
    2021
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Continuing Grant
INFEWS: U.S.-China: Managing agricultural nitrogen to achieve sustainable Food-Energy-Water Nexus in China and the U.S.
INFEWS:中美:管理农业氮以实现中国和美国可持续的食品-能源-水关系
  • 批准号:
    2025826
  • 财政年份:
    2021
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
  • 批准号:
    2113590
  • 财政年份:
    2021
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Standard Grant
CAREER: Sustainable Nitrogen Management across Spatial and System Scales
职业:跨空间和系统尺度的可持续氮管理
  • 批准号:
    2047165
  • 财政年份:
    2021
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Continuing Grant
Tensor and Subspace Learning Methods with Applications to Medical Imaging
张量和子空间学习方法及其在医学成像中的应用
  • 批准号:
    2053697
  • 财政年份:
    2021
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Continuing Grant
CAREER: Quantification of Cellular Proteome Stress and Recovery Using Chemical Methods
职业:使用化学方法量化细胞蛋白质组压力和恢复
  • 批准号:
    1944973
  • 财政年份:
    2020
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Standard Grant

相似国自然基金

基于自监督学习的非规则网格混采数据分离与重建方法研究
  • 批准号:
    42304125
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于离散几何模型的高质量非结构曲面网格生成方法研究
  • 批准号:
    12301489
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
自由曲面空间网格结构形态与鲁棒性一体化设计理论及方法研究
  • 批准号:
    52368018
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
  • 批准号:
    52378167
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于自适应笛卡尔网格-格子波尔兹曼方法和自动微分方法的高效非定常流动导数计算方法研究
  • 批准号:
    12302379
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FMRG: Cyber: Manufacturing USA: Exploiting Spatio-Temporal Interdependency Between Electrochemical Manufacturing and Power Grid to Optimize Flexibility and Sustainability
FMRG:网络:美国制造:利用电化学制造和电网之间的时空相互依赖性来优化灵活性和可持续性
  • 批准号:
    2328160
  • 财政年份:
    2023
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Standard Grant
Thermal energy storage solUtions to optimally Manage BuildingS and Unlock their grid balancing and flexibility Potential
热能存储解决方案可优化管理建筑物并释放其电网平衡和灵活性潜力
  • 批准号:
    10064507
  • 财政年份:
    2023
  • 资助金额:
    $ 51.33万
  • 项目类别:
    EU-Funded
Equity assessment of demand-side flexibility technologies in grid integrated transportation electrification
电网综合交通电气化需求侧灵活性技术的公平性评估
  • 批准号:
    2872426
  • 财政年份:
    2023
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Studentship
FMRG: Cyber: Manufacturing USA: Exploiting Spatio-Temporal Interdependency Between Electrochemical Manufacturing and Power Grid to Optimize Flexibility and Sustainability
FMRG:网络:美国制造:利用电化学制造和电网之间的时空相互依赖性来优化灵活性和可持续性
  • 批准号:
    2328160
  • 财政年份:
    2023
  • 资助金额:
    $ 51.33万
  • 项目类别:
    Standard Grant
Neural Mapping of the Social Landscape
社会景观的神经映射
  • 批准号:
    10154808
  • 财政年份:
    2021
  • 资助金额:
    $ 51.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了