Driving Behaviour in Multi-Winner Elections (BMW)

多位获胜者选举中的驾驶行为(宝马)

基本信息

  • 批准号:
    EP/X038351/1
  • 负责人:
  • 金额:
    $ 64.3万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Modern societies often need to make choices based on the desires and preferences of multiple stakeholders: such choices range from traffic policies in a local neighbourhood to joining or leaving major political oreconomic alliances. Similar challenges are faced by many organisations, both commercial and non-profit: examples include hiring decisions, identifying strategic priorities, and budget allocation. Likewise, independent artificial agents interacting in a common environment may need to agree on a joint plan of action or allocation of resources. Historically, such scenarios were analysed using the methodology of socialchoice-a discipline that combines tools of mathematics, economics and political science. More recently, it became clear that one also needs to consider algorithmic aspects of the proposed solutions, which leadto the emergence of the field of computational social choice (COMSOC).While much of the early COMSOC research considered the setting where the goal is to elect a single winning alternative based on voters' preferences over the alternatives, more recently the focus has shifted to the multi-winner voting setting, where one aims to select k alternatives (a committee). The applications of this model include electing political leaders, shortlisting applicants for jobs or talent competitions, creating portfolios or identifying items to recommend to a user of online media based on other users' experiences, etc. An even more general setting is that of participatory budgeting (PB)-the task of aggregating the voters' preferences to select a subset of projects to implement from a list of options, where each project has a cost and the total cost should not exceed a given budget. PB was initiated in Brazil in 1989 and was envisioned as a way for local residents to allocate public funds in their neighbourhood. Over the next few decades it quickly spread across the world: e.g., in 2022, the city of Paris will allocate over 75 million euro for urban development by means of PB. PB can capture a variety of applications other than urban planning, such as, e.g., deciding on a set of measures to achieve a particular target (such as reducing carbon emissions or controlling viral transmission), or allocating the programmers' time in an open-source software community.Both multi-winner voting and participatory budgeting have received a lot of attention from the COMSOC community, with researchers identifying general principles for selecting good solutions (axioms) and pro-posing (computationally efficient) voting rules that satisfy these axioms (or proving impossibility/hardness results). However, much of the existing work assumes that the voters have a complete knowledge oftheir preferences and report them truthfully. Both assumptions are not fully realistic: voters may have a hard time making up their minds concerning complex proposals (such as, e.g., evaluating risk and benefitsof different energy sources or implementing educational reforms), and they can misreport their preferences if they can benefit from doing so. The primary focus of our proposal is to develop a systematic understanding of strategic behaviour in multi-winner voting and participatory budgeting, with a focus on the associated algorithmic challenges. Specifically, we shall evaluate the quality of stable outcomes of strategic voting and establish the complexity of computing them, as well as analyse the dynamics of iterative voting. We shall also examine the incentives associated with agents delegating their decisions to more knowledgeable agents. Broadly, we aim to identify tools for collective decision-making that can drive voting behaviour to desirable outcomes and perform well in realistic settings-i.e., in the presence of uncertainty and bounded rationality. We will then work with our project partners to apply these results in practical decision-making scenarios in the contexts of urban living and distributed autonomous organisations.
现代社会常常需要根据多个利益相关者的愿望和偏好做出选择:这些选择的范围从当地社区的交通政策到加入或退出主要的政治或经济联盟。许多商业和非营利组织都面临着类似的挑战:例子包括招聘决策、确定战略优先事项和预算分配。同样,在共同环境中交互的独立人工智能体可能需要就联合行动计划或资源分配达成一致。从历史上看,此类情景是使用社会选择方法论进行分析的,这是一门结合了数学、经济学和政治学工具的学科。最近,很明显,人们还需要考虑所提出的解决方案的算法方面,这导致了计算社会选择(COMSOC)领域的出现。虽然许多早期的 COMSOC 研究考虑了目标是选择的设置一种基于选民对替代方案的偏好的单一获胜方案,最近焦点已转移到多获胜者投票设置,其中一个人的目标是选择 k 个替代方案(委员会)。该模型的应用包括选举政治领导​​人、筛选工作或人才竞赛的申请人、创建作品集或根据其他用户的经验确定向在线媒体用户推荐的项目等。更普遍的设置是参与式预算。 (PB) - 汇总选民的偏好以从选项列表中选择要实施的项目子集的任务,其中每个项目都有成本,并且总成本不应超过给定的预算。 PB 于 1989 年在巴西发起,被设想为当地居民分配社区公共资金的一种方式。在接下来的几十年里,它迅速蔓延到世界各地:例如,2022年,巴黎市将通过PB方式拨款超过7500万欧元用于城市发展。 PB 可以捕获城市规划以外的各种应用,例如决定一套措施来实现特定目标(例如减少碳排放或控制病毒传播),或者在开放式环境中分配程序员的时间。源软件社区。多赢者投票和参与式预算都受到了 COMSOC 社区的广泛关注,研究人员确定了选择良好解决方案(公理)的一般原则,并提出了满足这些要求的(计算效率高的)投票规则公理(或证明不可能性/困难结果)。然而,现有的大部分工作都假设选民完全了解自己的偏好并如实报告。这两种假设都不完全现实:选民可能很难就复杂的提案(例如,评估不同能源的风险和收益或实施教育改革)做出决定,并且如果他们可以从中受益,他们可能会误报自己的偏好这样做。我们提案的主要重点是对多方投票和参与式预算中的战略行为有系统的理解,重点关注相关的算法挑战。具体来说,我们将评估策略投票稳定结果的质量并确定计算它们的复杂性,并分析迭代投票的动态。我们还将研究与代理人将决策委托给更有知识的代理人相关的激励措施。从广义上讲,我们的目标是找到集体决策的工具,这些工具可以推动投票行为达到理想的结果,并在现实环境中(即存在不确定性和有限理性的情况下)表现良好。然后,我们将与项目合作伙伴合作,将这些结果应用到城市生活和分布式自治组织背景下的实际决策场景中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maria Polukarov其他文献

Maria Polukarov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于脑电信号多域特征和深度学习的驾驶行为识别研究
  • 批准号:
    62366028
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于驾驶行为多源参数的高密度互通立交群运行风险机理与安全提升方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于多模态身心数据挖掘的驾驶压力对驾驶行为影响机理研究
  • 批准号:
    72001163
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
行人-车辆异构多智能体的群集避撞行为机理研究
  • 批准号:
    51905095
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
路表多模块律变视信息影响驾驶人跟车避碰行为机理及应用
  • 批准号:
    71901166
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Driving Behaviour in Multi-Winner Elections (BMW)
多位获胜者选举中的驾驶行为(宝马)
  • 批准号:
    EP/X038548/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.3万
  • 项目类别:
    Research Grant
A Randomized Controlled Trial Adding Behavioural Counselling to Supervised Physical Activity in Cancer Survivors
一项随机对照试验,在癌症幸存者的监督身体活动中添加行为咨询
  • 批准号:
    488066
  • 财政年份:
    2023
  • 资助金额:
    $ 64.3万
  • 项目类别:
    Operating Grants
A multi-scale assessment of songbird migration physiology and behaviour.
鸣禽迁徙生理和行为的多尺度评估。
  • 批准号:
    547992-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 64.3万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Co-constructing and evaluating a precision health strategy to promote physical activity in primary care: a multi-stakeholder plan
共同构建和评估精准健康策略,以促进初级保健中的身体活动:多方利益相关者计划
  • 批准号:
    468220
  • 财政年份:
    2022
  • 资助金额:
    $ 64.3万
  • 项目类别:
    Miscellaneous Programs
A Randomized Controlled Trial Adding Behavioural Counselling to Supervised Physical Activity in Cancer Survivors
一项随机对照试验,在癌症幸存者的监督身体活动中添加行为咨询
  • 批准号:
    477300
  • 财政年份:
    2022
  • 资助金额:
    $ 64.3万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了